World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Schiff Bases from α-ionone with Adenine, Cytosine, and l-leucine Biomolecules: Synthesis, Structural Features, Electronic Structure, and Medicinal Activities

    https://doi.org/10.1142/S2737416522500016Cited by:22 (Source: Crossref)

    Tea is a very important source of the terepenoid α-ionone, which is much appreciated as a medicinal beverage. Schiff bases are a very important class of organic compounds usually formed by the condensation of carbonyl compounds with amines. α-ionone is a carbonyl terpenoid obtained from Schiff bases on condensation with nucleobases like adenine and cytosine and the amino acid l-leucine. We synthesized these three Schiff bases and characterized them using UV, FTIR, and H1 and C13-NMR spectra. The molecules were optimized using B3LYP/6-311+G(2d,p) level followed by the simulation of FT-IR spectra, of which the simulated and experimental spectra showed complete agreement. The UV spectra were simulated using TD-DFT, and the electronic excitations were carefully analyzed. Natural bond orbitals provided an analysis of the stability of the compound, which is supplemented by the data from frontier molecular orbital analysis. Detailed wavefunction analysis is reported which predicts the active centers, reactivity profile, and the extent of non-covalent interactions. PASS indicated that compounds show antieczemic properties and antiarthritic properties, which is confirmed with the help of molecular docking results.

    References

    • 1. Mar Caja, M.; Preston, C.; Kempf, M.; Schreier, P. Flavor Authentication Studies of α-Ionone, α-Ionone and α-Ionol from Various Source. J. Agric. Food Chem. 2007, 55, 6700–6704. CrossrefGoogle Scholar
    • 2. Czajka, J. J.; Kambhampati, S.; Tang, Y. J.; Wang, Y.; Allen, D. K. Application of Stable Isotope Tracing to Elucidate Metabolic Dynamics during Yarrowia lipolytica α-Ionone Fermentation. IScience 2020, 23, 100854, https://doi.org/10.1016/j.isci.2020.100854. CrossrefGoogle Scholar
    • 3. Miyazawa, M.; Shimizu, K. Stereoselective Biocatalytic Reduction of α-Ionone by Glomerella Cingulata. J. Mol. Catal. B Enzym. 2012, 74, 6–8, https://doi.org/10.1016/j.molcatb.2011.07.021. CrossrefGoogle Scholar
    • 4. Mahattanatawee, K.; Rouseff, R.; Valim, M. F.; Naim, M. Identification and Aroma Impact of Norisoprenoids in Orange Juice. J. Agric. Food Chem. 2005, 53, 393–397, https://doi.org/10.1021/jf049012k. CrossrefGoogle Scholar
    • 5. Flaig, M.; Qi, S.; Wei, G.; Yang, X.; Schieberle, P. Characterization of the Key Odorants in a High-Grade Chinese Green Tea Beverage (Camellia sinensis; Jingshan cha) by means of the Sensomics Approach and Elucidation of Odorant Changes in Tea Leaves Caused by the Tea Manufacturing Process. J. Agric. Food Chem. 2020, 68, 5168–5179, https://doi.org/10.1021/acs.jafc.0c01300. CrossrefGoogle Scholar
    • 6. Lukin, I.; Jach, G.; Wingartz, I.; Welters, P.; Schembecker, G. Recovery of Natural α-Ionone from Fermentation Broth. J. Agric. Food Chem. 2019, 67, 13412–13419, https://doi.org/10.1021/acs.jafc.8b07270. CrossrefGoogle Scholar
    • 7. Yamanishi, T.; Kawakami, M.; Kobayashi, A.; Hamada, T.; Musalam, Y. Thermal Generation of Aroma Compounds from Tea and Tea Constituents. 1989, 310–319. https://doi.org/10.1021/bk-1989-0409.ch029. Google Scholar
    • 8. Münch, D.; Galizia, C. G. ; DoOR 2.0 — Comprehensive Mapping of Drosophila Melanogaster Odorant Responses. Sci. Rep. 2016, 6, 1–14, https://doi.org/10.1038/srep21841. CrossrefGoogle Scholar
    • 9. Layer, R. W. The Chemistry of Imines. Chem. Rev. 1966, 2, 489–510, https://doi.org/10.1021/cr60225a003. Google Scholar
    • 10. Surendar, P.; Pooventhiran, T.; Rajam, S.; Bhattacharyya, U.; Bakht, A.; Thomas, R. Quasi Liquid Schiff Bases from Trans-2-Hexenal and Cytosine and l-Leucine with Potential Antieczematic and Antiarthritic Activities: Synthesis, Structure and Quantum Mechanical Studies. J. Mol. Liq. 2021, 334, 116448, https://doi.org/10.1016/j.molliq.2021.116448. CrossrefGoogle Scholar
    • 11. Surendar, P.; Pooventhiran, T.; Al-Zaqri, N.; Rajam, S.; Jagadeeswara Rao, D.; Thomas, R. Synthesis of Three Quasi Liquid Schiff Bases between Hexanal and Adenine, Cytosine, and l-Leucine, Structural Interpretation, Quantum Mechanical Studies and Biological Activity Prediction. J. Mol. Liq. 2021, 117305, https://doi.org/10.1016/j.molliq.2021.117305. CrossrefGoogle Scholar
    • 12. Kumari, S.; Chauhan, G. S. New CelluloseLysine Schiff-Base-Based Sensor-Adsorbent for Mercury Ions. ACS Appl. Mater. Interfaces 2014, 6, 5908–5917, https://doi.org/10.1021/am500820n. CrossrefGoogle Scholar
    • 13. Nagata, T.; Koyanagi, M.; Deupi, X.; Terakita, A. The Counterion-Retinylidene Schiff Base Interaction of an Invertebrate Rhodopsin rearranges upon Light Activation. Commun. Biol. 2019, 2, 1–9, https://doi.org/10.1038/s42003-019-0409-3. CrossrefGoogle Scholar
    • 14. Abu-Dief, A. M.; Mohamed, I. M. A. A Review on Versatile Applications of Transition Metal Complexes Incorporating Schiff Bases. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133, https://doi.org/10.1016/j.bjbas.2015.05.004. Google Scholar
    • 15. Abd-Elzaher, M. M.; Labib, A. A.; Mousa, H. A.; Moustafa, S. A.; Ali, M. M.; El-Rashedy, A. A. Synthesis, Anticancer Activity and Molecular Docking Study of Schiff Base Complexes Containing Thiazole Moiety. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 85–96, https://doi.org/10.1016/j.bjbas.2016.01.001. Google Scholar
    • 16. El-Tabl, A. S.; Mohamed Abd El-Waheed, M.; Wahba, M. A.; Abd El-Halim Abou El-Fadl, N. Synthesis, Characterization, and Anticancer Activity of New Metal Complexes Derived from 2-Hydroxy-3-(Hydroxyimino)-4-Oxopentan-2-Ylidene)Benzohydrazide. Bioinorg. Chem. Appl. 2015, 2015, https://doi.org/10.1155/2015/126023. CrossrefGoogle Scholar
    • 17. Orio, M.; Pantazis, D. A.; Neese, F. Density Functional Theory. Photosynth. Res. 2009, 102, 443–453, https://doi.org/10.1007/s11120-009-9404-8. CrossrefGoogle Scholar
    • 18. Al-Otaibi, J. S.; Almuqrin, A. H.; Mary, Y. S.; Thomas, R. Modeling the Conformational Preference, Spectroscopic Properties, UV Light Harvesting Efficiency, Biological Receptor Inhibitory Ability and other Physico-Chemical Properties of Five Imidazole Derivatives using Quantum Mechanical and Molecular Mechanics Tools. J. Mol. Liq. 2020, 310, 112871. CrossrefGoogle Scholar
    • 19. Al-Otaibi, J. S.; Almuqrin, A. H.; Sheena Mary, Y.; Mary, Y. S.; Thomas, R. Modeling the Conformational Preference, Spectral Analysis and other Quantum Mechanical Studies on Three Bioactive Aminobenzoate Derivatives and their SERS Active Graphene Complexes. Polycycl. Aromat. Compd. 2020, 1–11, https://doi.org/10.1080/10406638.2020.1827270. CrossrefGoogle Scholar
    • 20. Priya Yeddu, S.; Thangaiyan, P.; Veeraiah, A.; Vijay, D.; Eswar Srikanth, K.; Irfan, A.; Thomas, R. Vibrational Spectral Studies, Quantum Mechanical Properties, and Biological Activity Prediction and Inclusion Molecular Self-Assembly Formation of N-N’-Dimethylethylene Urea. 2022, 12, 3996–4017, https://doi.org/10.33263/BRIAC123.39964017. Google Scholar
    • 21. Priya, Y. S.; Rao, K. R.; Chalapathi, P. V.; Veeraiah, A.; Srikanth, K. E.; Mary, Y. S.; Thomas, R. Intricate Spectroscopic Profiling, Light Harvesting Studies and other Quantum Mechanical Properties of 3-Phenyl-5-Isooxazolone using Experimental and Computational Strategies. J. Mol. Struct. 2020, 1203, 127461, https://doi.org/10.1016/j.molstruc.2019.127461. CrossrefGoogle Scholar
    • 22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, 2013. Google Scholar
    • 23. Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652, https://doi.org/10.1063/1.464913. CrossrefGoogle Scholar
    • 24. Schmider, H. L.; Becke, A. D. Chemical Content of the Kinetic Energy Density. J. Mol. Struct. THEOCHEM 2000, 527, 51–61, https://doi.org/10.1016/S0166-1280(00)00477-2. CrossrefGoogle Scholar
    • 25. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100, https://doi.org/10.1103/PhysRevA.38.3098. CrossrefGoogle Scholar
    • 26. Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269, https://doi.org/10.1063/1.447079. CrossrefGoogle Scholar
    • 27. Longuet-Higgins, H. C.; Pople, J. A. Electronic Spectral Shifts of Nonpolar Molecules in Nonpolar Solvents. J. Chem. Phys. 1957, 27, 192–194, https://doi.org/10.1063/1.1743666. CrossrefGoogle Scholar
    • 28. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654, https://doi.org/10.1063/1.438955. CrossrefGoogle Scholar
    • 29. Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange–Correlation Functional using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57, https://doi.org/10.1016/J.CPLETT.2004.06.011. CrossrefGoogle Scholar
    • 30. Shen, N.; Fan, Y.; Pamidighantam, S. E-Science Infrastructures for Molecular Modeling and Parametrization. J. Comput. Sci. 2014, 5, 576–589, https://doi.org/10.1016/j.jocs.2014.01.005. CrossrefGoogle Scholar
    • 31. Dooley, R.; Milfeld, K.; Guiang, C.; Pamidighantam, S.; Allen, G. From Proposal to Production: Lessons Learned Developing the Computational Chemistry Grid Cyberinfrastructure. J. Grid Comput. 2006, 4, 195–208, https://doi.org/10.1007/s10723-006-9043-7. CrossrefGoogle Scholar
    • 32. Pamidighantam, S.; Nakandala, S.; Abeysinghe, E.; Wimalasena, C.; Yodage, S. R.; Marru, S.; Pierce, M. Community Science Exemplars in SEAGrid Science Gateway: Apache Airavata Based Implementation of Advanced Infrastructure. Procedia Comput. Sci. 2016, 80, 1927–1939, https://doi.org/10.1016/j.procs.2016.05.535. CrossrefGoogle Scholar
    • 33. O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. CCLIB: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845, https://doi.org/10.1002/jcc.20823. CrossrefGoogle Scholar
    • 34. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592, https://doi.org/10.1002/jcc.22885. CrossrefGoogle Scholar
    • 35. Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of Activity Spectra for Biologically Active Substances. Bioinformatics 2000, 16, 747–748, https://doi.org/10.1093/bioinformatics/16.8.747. CrossrefGoogle Scholar
    • 36. Filimonov, D. A.; Lagunin, A. A.; Gloriozova, T. A.; Rudik, A. V.; Druzhilovskii, D. S.; Pogodin, P. V.; Poroikov, V. V. Prediction of the Biological Activity Spectra of Organic Compounds using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457, https://doi.org/10.1007/s10593-014-1496-1. CrossrefGoogle Scholar
    • 37. Mary, Y. S.; Mary, Y. S.; Resmi, K. S.; Kumar, V. S.; Thomas, R.; Sureshkumar, B. Detailed Quantum Mechanical, Molecular Docking, QSAR Prediction, Photovoltaic Light Harvesting Efficiency Analysis of Benzil and its Halogenated Analogues. Heliyon 2019, 5, e02825, https://doi.org/10.1016/j.heliyon.2019.e02825. CrossrefGoogle Scholar
    • 38. Burley, S. K.; Berman, H. M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J. M.; Dutta, S.; Feng, Z.; Ghosh, S.; Goodsell, D. S.; Green, R. K.; Guranović, V.; Guzenko, D.; Hudson, B. P.; Kalro, T.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Periskova, I.; Prlić, A.; Randle, C.; Rose, A.; Rose, P.; Sala, R.; Sekharan, M.; Shao, C.; Tan, L.; Tao, Y.-P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Woo, J.; Yang, H.; Young, J.; Zhuravleva, M.; Zardecki, C. RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy. Nucleic Acids Res. 2018, 47, D464–D474, https://doi.org/10.1093/nar/gky1004. CrossrefGoogle Scholar
    • 39. Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, https://doi.org/10.1002/jcc.21334. CrossrefGoogle Scholar
    • 40. Discovery Studio BIOVA, Discovery Studio Client V17, Dassault Systemes, San Diego, 2017. http://accelrys.com/products/collaborative-science/biovia-discovery-studio/. Google Scholar
    • 41. Mary, Y. S.; Yalcin, G.; Mary, Y. S.; Resmi, K. S.; Thomas, R.; Önkol, T.; Kasap, E. N.; Yildiz, I. Spectroscopic, Quantum Mechanical Studies, Ligand Protein Interactions and Photovoltaic Efficiency Modeling of Some Bioactive Benzothiazolinone Acetamide Analogs. Chem. Pap. 2020, https://doi.org/10.1007/s11696-019-01047-7. CrossrefGoogle Scholar
    • 42. Al-Otaibi, J. S.; Mary, Y. S.; Armaković, S.; Thomas, R. Hybrid and Bioactive Cocrystals of Pyrazinamide with Hydroxybenzoic Acids: Detailed Study of Structure, Spectroscopic Characteristics, other Potential Applications and Noncovalent Interactions using SAPT. J. Mol. Struct. 2020, 1202, 127316, https://doi.org/10.1016/j.molstruc.2019.127316. CrossrefGoogle Scholar
    • 43. Kumar, V. S.; Mary, Y. S.; Pradhan, K.; Brahman, D.; Mary, Y. S.; Thomas, R.; Roxy, M. S.; Van Alsenoy, C. Synthesis, Spectral Properties, Chemical Descriptors and Light Harvesting Studies of a New Bioactive Azo Imidazole Compound. J. Mol. Struct. 2020, 1199, 127035, https://doi.org/10.1016/j.molstruc.2019.127035. CrossrefGoogle Scholar
    • 44. Sun, C.; Li, Y.; Song, P.; Ma, F. An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials (Basel) 2016, 9, 1–22, https://doi.org/10.3390/ma9100813. CrossrefGoogle Scholar
    • 45. Afzal, A.; Thayyil, M. S.; Shariq, M.; Mary, Y. S.; Resmi, K. S.; Thomas, R.; Islam, N.; Abinu, A. J. Anti-Cancerous Brucine and Colchicine: Experimental and Theoretical Characterization. ChemistrySelect 2019, 4, 11441–11454, https://doi.org/10.1002/slct.201902698. CrossrefGoogle Scholar
    • 46. Dos Santos, G. C.; Oliveira, E. F.; Lavarda, F. C.; da Silva-Filho, L. C. Designing New Quinoline-Based Organic Photosensitizers for Dye-Sensitized Solar Cells (DSSC): A Theoretical Investigation. J. Mol. Model. 2019, 25, https://doi.org/10.1007/s00894-019-3958-y. CrossrefGoogle Scholar
    • 47. Thomas, R.; Mary, Y. S.; Resmi, K. S.; Narayana, B.; Sarojini, B. K.; Vijayakumar, G.; Van Alsenoy, C. Two Neoteric Pyrazole Compounds as Potential Anti-Cancer Agents: Synthesis, Electronic Structure, Physico-Chemical Properties and Docking Analysis. J. Mol. Struct. 2019, 1181, 455–466, https://doi.org/10.1016/j.molstruc.2019.01.003. CrossrefGoogle Scholar
    • 48. Curutchet, C.; Mennucci, B. Quantum Chemical Studies of Light Harvesting. Chem. Rev. 2017, 117, 294–343, https://doi.org/10.1021/acs.chemrev.5b00700. CrossrefGoogle Scholar
    • 49. Chako, N. Q. Absorption of Light in Organic Compounds. J. Chem. Phys. 1934, 2, 644–653, https://doi.org/10.1063/1.1749368. CrossrefGoogle Scholar
    • 50. Rho, Y.; Wanit, M.; Yeo, J.; Hong, S.; Han, S.; Choi, J.-H.; Hong, W.-H.; Lee, D.; Ko, S. H. Improvement of Light-Harvesting Efficiency in Dye-Sensitized Solar Cells using Silica Beads Embedded in a TiO2 Nanoporous Structure. J. Phys. D, Appl. Phys. 2013, 46, 024006, https://doi.org/10.1088/0022-3727/46/2/024006. CrossrefGoogle Scholar
    • 51. Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. WIREs Comput. Mol. Sci. 2012, 2, 1–42, https://doi.org/10.1002/wcms.51. CrossrefGoogle Scholar
    • 52. Kyriakidou, K.; Karafiloglou, P. Natural Bond Orbitals: Local Sets Showing Minimal Intra-Pair Correlations and Minimal Unpaired Electron Populations. Comput. Theor. Chem. 2017, 1100, 1–12, https://doi.org/10.1016/j.comptc.2016.11.017. CrossrefGoogle Scholar
    • 53. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746, https://doi.org/10.1063/1.449486. CrossrefGoogle Scholar
    • 54. Dunnington, B. D.; Schmidt, J. R. Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. J. Chem. Theory Comput. 2012, 8, 1902–1911, https://doi.org/10.1021/ct300002t. CrossrefGoogle Scholar
    • 55. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1. Google Scholar
    • 56. Murray, J. S.; Seminario, J. M.; Politzer, P.; Sjoberg, P. Average Local Ionization Energies Computed on the Surfaces of Some Strained Molecules. Int. J. Quantum Chem. 1990, 38, 645–653, https://doi.org/10.1002/qua.560382462. CrossrefGoogle Scholar
    • 57. Pooventhiran, T.; Bhattacharyya, U.; Rao, D. J.; Chandramohan, V.; Karunakar, P.; Irfan, A.; Mary, Y. S.; Thomas, R. Detailed Spectra, Electronic Properties, Qualitative Non-Covalent Interaction Analysis, Solvatochromism, Docking and Molecular Dynamics Simulations in Different Solvent Atmosphere of Cenobamate. Struct. Chem. 2020, 31, 2475–2485, https://doi.org/10.1007/s11224-020-01607-8. CrossrefGoogle Scholar
    • 58. Hossain, M.; Thomas, R.; Mary, Y. S.; Resmi, K. S.; Armaković, S.; Armaković, S. J.; Nanda, A. K.; Vijayakumar, G.; Van Alsenoy, C. Understanding Reactivity of Two Newly Synthetized Imidazole Derivatives by Spectroscopic Characterization and Computational study. J. Mol. Struct. 2018, 1158, 176–196, https://doi.org/10.1016/j.molstruc.2018.01.029. CrossrefGoogle Scholar
    • 59. Armaković, S.; Armaković, S. J.; Vraneš, M.; Tot, A.; Gadžurić, S. Determination of Reactive Properties of 1-Butyl-3-Methylimidazolium Taurate Ionic Liquid Employing DFT Calculations. J. Mol. Liq. 2016, 222, 796–803, https://doi.org/10.1016/J.MOLLIQ.2016.07.094. CrossrefGoogle Scholar
    • 60. Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials and Chemical Reactivity. Rev. Comput. Chem. 1991, 273–312, https://doi.org/10.1002/9780470125793.ch7. CrossrefGoogle Scholar
    • 61. Politzer, P.; Laurence, P. R.; Jayasuriya, K. Molecular Electrostatic Potentials: An Effective Tool for the Elucidation of Biochemical Phenomena. Environ. Health Perspect. 1985, 61, 191–202, https://doi.org/10.1289/ehp.8561191. CrossrefGoogle Scholar
    • 62. Politzer, P.; Lane, P.; Concha, M. C. Atomic and Molecular Energies in Terms of Electrostatic Potentials at Nuclei. Int. J. Quantum Chem. 2002, 90, 459–463, https://doi.org/10.1002/qua.10105. CrossrefGoogle Scholar
    • 63. Politzer, P.; Murray, J. S. Electrostatic Potentials at the Nuclei of Atoms and Molecules. Theor. Chem. Acc. 2021, 140, 7, https://doi.org/10.1007/s00214-020-02701-0. CrossrefGoogle Scholar
    • 64. Politzer, P.; Murray, J. S. The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules. Theor. Chem. Acc. 2002, 108, 134–142, https://doi.org/10.1007/s00214-002-0363-9. CrossrefGoogle Scholar
    • 65. Bulat, F. A.; Toro-Labbé, A.; Brinck, T.; Murray, J. S.; Politzer, P. Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies. J. Mol. Model. 2010, 16, 1679–1691, https://doi.org/10.1007/s00894-010-0692-x. CrossrefGoogle Scholar
    • 66. Breneman, C. M.; Martinov, M. , 3 — The use of electrostatic potential fields in QSAR and QSPR, in Molecular Electrostatic Potentials, Murray, J. S.; Sen, K. (eds.), Elsevier, 1996, pp. 143–179, https://doi.org/10.1016/S1380-7323(96)80043-4. CrossrefGoogle Scholar
    • 67. Karshikoff, A. Non-Covalent Interactions in Proteins. World Scientific Publishing, 2006, https://doi.org/10.1142/p477. LinkGoogle Scholar
    • 68. Boto, R. A.; Piquemal, J. P.; Contreras-García, J. Revealing Strong Interactions with the Reduced Density Gradient: A Benchmark for Covalent, Ionic and Charge-Shift Bonds. Theor. Chem. Acc. 2017, 136, 1–9, https://doi.org/10.1007/s00214-017-2169-9. CrossrefGoogle Scholar
    • 69. Bhattacharyya, U.; Pooventhiran, T.; Thomas, R. Adsorption of the Drug Bempedoic Acid over different 2D/3D Nanosurfaces and Enhancement of Raman Activity Enabling Ultrasensitive Detection: First Principle Analysis. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 2021, 254, 119630. CrossrefGoogle Scholar
    • 70. Pooventhiran, T.; Cheriet, M.; Bhattacharyya, U.; Irfan, A.; Puchta, R.; Sowrirajan, S.; Thomas, R. Detailed Structural Examination, Quantum Mechanical Studies of the Aromatic Compound Solarimfetol and Formation of Inclusion Compound with Cucurbituril. Polycycl. Aromat. Compd. 2021, 1–13, https://doi.org/10.1080/10406638.2021.1937238. CrossrefGoogle Scholar
    • 71. Vilhelmsson, M.; Zargari, A.; Crameri, R.; Rasool, O.; Achour, A.; Scheynius, A.; Hallberg, B. M. Crystal Structure of the Major Malassezia Sympodialis Allergen Mala s 1 Reveals a β-Propeller Fold: A Novel Fold among Allergens. J. Mol. Biol. 2007, 369, 1079–1086, https://doi.org/10.1016/j.jmb.2007.04.009. CrossrefGoogle Scholar
    • 72. Li, H.; Van Vranken, S.; Zhao, Y.; Li, Z.; Guo, Y.; Eisele, L.; Li, Y. Crystal Structures of T Cell Receptor β Chains related to Rheumatoid Arthritis. Protein Sci. 2005, 14, 3025–3038, https://doi.org/10.1110/ps.051748305. CrossrefGoogle Scholar
    • 73. Al-Zaqri, N.; Pooventhiran, T.; Alsalme, A.; Rao, D. J.; Rao, S. S.; Sankar, A.; Thomas, R. First-Principle Studies of Istradefylline with Emphasis on the Stability, Reactivity, Interactions and Wavefunction-Dependent Properties. Polycycl. Aromat. Compd. 2020, 1–15. CrossrefGoogle Scholar
    • 74. Alsalme, A.; Pooventhiran, T.; Al-Zaqri, N.; Rao, D. J.; Thomas, R. Structural, Physico-Chemical Landscapes, Ground State and Excited State Properties in Different Solvent Atmosphere of Avapritinib and its Ultrasensitive Detection using SERS/GERS on Self-Assembly Formation with Graphene Quantum Dots. J. Mol. Liq. 2021, 322, 114555, https://doi.org/10.1016/j.molliq.2020.114555. CrossrefGoogle Scholar
    • 75. Al-Zaqri, N.; Pooventhiran, T.; Rao, D. J.; Alsalme, A.; Warad, I.; Thomas, R. Structure, Conformational Dynamics, Quantum Mechanical Studies and Potential Biological Activity Analysis of Multiple Sclerosis Medicine Ozanimod. J. Mol. Struct. 2021, 1227, 129685, https://doi.org/10.1016/j.molstruc.2020.129685. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chemistry New Titles