World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Strengthening Semaglutide-GLP-1R Binding Affinity via a Val27-Arg28 Exchange in the Peptide Backbone of Semaglutide: A Computational Structural Approach

    https://doi.org/10.1142/S2737416521500289Cited by:1 (Source: Crossref)

    Semaglutide is a glucagon-like peptide 1 analog used for the treatment of patients with type 2 diabetes mellitus. With 94% sequence similarity to human GLP-1, semaglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist, which binds directly to GLP-1R, causing various beneficial downstream effects that reduce blood glucose. Incorporating currently (June 21, 2021) available experimental structural data in PDB of semaglutide and GLP-1R, and with a set of computational structural and biophysical analysis, this short paper for the first time puts forward an experimentally testable hypothesis: semaglutide is able to bind tighter to GLP-1R via a simple Val27-Arg28 exchange in its peptide backbone.

    References

    • 1. Fuji, H.; Qi, F.; Qu, L.; Takaesu, Y.; Hoshino, T. Prediction of ligand binding affinity to target proteins by molecular mechanics theoretical calculation. Chem. Pharm. Bull. 2017, 65 (5), 461–468. CrossrefGoogle Scholar
    • 2. Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 2003, 10 (12), 980–980. CrossrefGoogle Scholar
    • 3. Li, W. Half-a-century Burial of ρ, θ and φ in PDB. Preprints 2021, 2021030590, doi: 10.20944/preprints202103.0590.v1. Google Scholar
    • 4. Li, W. How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein? PLoS One 2017, 12 (6), e0178519. Google Scholar
    • 5. Ahrén, B.; Atkin, S. L.; Charpentier, G.; Warren, M. L.; Wilding, J. P. H.; Birch, S. et al. Semaglutide induces weight loss in subjects with type 2 diabetes regardless of baseline BMI or gastrointestinal adverse events in the Sustain 1 to 5 trials. Diabetes Obes. Metab. 2018, 20 (9), 2210–2219. CrossrefGoogle Scholar
    • 6. Aroda, V. R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N. M.; Villegas, E. C. M. et al. PIONEER 1: Randomized oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care 2019, 42 (9), 1724–1732. CrossrefGoogle Scholar
    • 7. Anderson, S. L.; Beutel, T. R.; Trujillo, J. M. Oral semaglutide in type 2 diabetes. J. Diabetes Complicat. 2020, 34 (4), 107520. CrossrefGoogle Scholar
    • 8. Pieber, T. R.; Bode, B.; Mertens, A.; Cho, Y. M.; Christiansen, E.; Hertz, C. L. et al. Efficacy and safety of oral semaglutide with flexible dose adjustment versus sitagliptin in type 2 diabetes (PIONEER 7): A multicentre, open-label, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019, 7 (7), 528–539. CrossrefGoogle Scholar
    • 9. Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 2015, 58 (18), 7370–7380. CrossrefGoogle Scholar
    • 10. Knudsen, L. B.; Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019, 10, 1–32. CrossrefGoogle Scholar
    • 11. Wilding, J. P. H. Semaglutide in weight management — Author’s reply. Lancet 2019, 394 (10205), 1226–1227. CrossrefGoogle Scholar
    • 12. Bucheit, J. D.; Pamulapati, L. G.; Carter, N.; Malloy, K.; Dixon, D. L.; Sisson, E. M. Oral semaglutide: A review of the first oral glucagon-like peptide 1 receptor agonist. Diab. Technol. Therap. 2020, 22 (1), 10–18. CrossrefGoogle Scholar
    • 13. Kanters, S.; Wilkinson, L.; Vrazic, H.; Sharma, R., Lopes, S.; Popoff, E. et al. Comparative efficacy of once-weekly semaglutide versus SGLT-2 inhibitors in patients inadequately controlled with one to two oral antidiabetic drugs: A systematic literature review and network meta-analysis. BMJ Open 2019, 9 (7), e023458. CrossrefGoogle Scholar
    • 14. Yang, P. Y.; Zou, H.; Amso, Z.; Lee, C.; Huang, D.; Woods, A. K. et al. New generation oxyntomodulin peptides with improved pharmacokinetic profiles exhibit weight reducing and anti-steatotic properties in mice. Bioconjug. Chem. 2020, 31 (4), 1167–1176. CrossrefGoogle Scholar
    • 15. Han, J., Fu, J., Yang, Q.; Zhou, F.; Chen, X.; Li, C. et al. Rational design and biological evaluation of gemfibrozil modified Xenopus GLP-1 derivatives as long-acting hypoglycemic agents. Eur. J. Med. Chem. 2020, 198, 112389. CrossrefGoogle Scholar
    • 16. Aschenbrenner, D. S. New drug for Type 2 diabetes. Amer. J. Nurs. 2020, 120 (1), 25. Google Scholar
    • 17. Lee, Y. S.; Jun, H. S. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014, 63 (1), 9–19. CrossrefGoogle Scholar
    • 18. Cowart, K. Oral semaglutide: First-in-class oral GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. Ann. Pharmacother. 2019, 54 (5), 478–485. CrossrefGoogle Scholar
    • 19. Nadkarni, P.; Chepurny, O. G.; Holz, G. G. , Regulation of glucose homeostasis by GLP-1. Progress in Molecular Biology and Translational Science. Elsevier, Amsterdam, 23–65, 2014. Google Scholar
    • 20. Kaiserman, K.; Jung, H.; Benabbad, I.; Karges, B.; Polak, M.; Rosilio, M. 20 Years of insulin lispro in pediatric type 1 diabetes: A review of available evidence. Pediatr. Diabetes 2016, 18 (2), 81–94. CrossrefGoogle Scholar
    • 21. Baeshen, N. A.; Baeshen, M. N.; Sheikh, A.; Bora, R. S.; Ahmed, M.; Ramadan, H. et al. Cell factories for insulin production. Microb. Cell Fact. 2014, 13 (1), 1–9, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203937/pdf/12934_2014_Article_141.pdf. CrossrefGoogle Scholar
    • 22. Walsh, G.Murphy, B. (eds.). Biopharmaceuticals, an Industrial Perspective. Springer, Netherlands, 1999. CrossrefGoogle Scholar
    • 23. Frits Holleman, M.D.; Joost B.L.; Hoekstra, M.D. Insulin Lispro. New Engl. J. Med. 2003, 349 (15), 1487–1487. CrossrefGoogle Scholar
    • 24. Zaykov, A. N.; Mayer, J. P.; DiMarchi, R. D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov. 2016, 15 (6), 425–439. CrossrefGoogle Scholar
    • 25. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucl. Acids Res. 2018, 46 (W1), W296–W303. CrossrefGoogle Scholar
    • 26. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T. et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucl. Acids Res. 2014, 42 (W1), W252–W258. CrossrefGoogle Scholar
    • 27. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C. et al. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25 (13), 1605–1612. CrossrefGoogle Scholar
    • 28. Vangone, A.; Bonvin, A. M. Contacts-based prediction of binding affinity in protein–protein complexes. eLife 2015, 4, 1–15, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4523921/. CrossrefGoogle Scholar
    • 29. Xue, L. C.; Rodrigues, J. P.; Kastritis, P. L.; Bonvin, A. M., Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016, 32 (23), 3676–3678. CrossrefGoogle Scholar
    • 30. Li, W. Delving deep into the structural aspects of the BPro28-BLys29 exchange in Insulin Lispro: A structural biophysical lesson. Preprints 2020, 2020070552, doi: 10.20944/preprints202007.0552.v1. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chemistry New Titles