World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Application Limits of Conservative Source Interpolation Methods Using a Low Mach Number Hybrid Aeroacoustic Workflow by:11 (Source: Crossref)

    In low Mach number aeroacoustics, the well-known disparity of scales allows applying hybrid simulation models using different meshes for flow and acoustics, which leads to a fast computational procedure. The hybrid workflow of the perturbed convective wave equation involves three steps: (1) perform unsteady incompressible flow computations on a subdomain; (2) compute the acoustic sources and (3) simulate the acoustic field, using a mesh specifically suited. These aeroacoustic methods seek for a robust, conservative and computational efficient mesh-to-mesh transformation of the aeroacoustic sources. In this paper, the accuracy and the application limitations of a cell-centroid-based conservative interpolation scheme is compared to the computationally advanced cut-volume cell approach in 2D and 3D. Based on a previously validated axial fan model where spurious artifacts have been visualized, the results are evaluated systematically using a grid convergence study. To conclude, the monotonic convergence of both conservative interpolation schemes is demonstrated. Regarding arbitrary mesh deformation (for example, the motion of the vocal folds in human phonation), the study reveals that the computationally simpler cell-centroid-based conservative interpolation can be the method of choice.


    • 1. S. Schoder and M. Kaltenbacher, Hybrid aeroacoustic computations: State of art and new achievements, J. Theor. Comput. Acoust. 27(4) (2019) 1950020. LinkGoogle Scholar
    • 2. D. Crighton, Computational aeroacoustics for low Mach number flows, in Computational Aeroacoustics (Springer, 1993), pp. 50–68. CrossrefGoogle Scholar
    • 3. C. WagnerT. HüttlP. Sagaut (eds.), Large-Eddy Simulation for Acoustics (Cambridge University Press, 2007). CrossrefGoogle Scholar
    • 4. S. Caro, Y. Detandt, J. Manera, F. Mendonca and R. Toppinga, Validation of a new hybrid CAA strategy and application to the noise generated by a flap in a simplified HVAC duct, 15th AIAA/CEAS Aeroacoustics Conf., 2009. CrossrefGoogle Scholar
    • 5. T. Schröder, P. Silkeit and O. Estorff, Influence of source term interpolation on hybrid computational aeroacoustics in finite volumes, InterNoise 2016, 2016, pp. 1598–1608. Google Scholar
    • 6. P. E. Farrell and J. R. Maddison, Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Eng. 200 (2011) 89–100. CrossrefGoogle Scholar
    • 7. I. Steinbrecher, M. Mayr, M. J. Grill, J. Kremheller, C. Meier and A. Popp, A mortar-type finite element approach for embedding 1D beams into 3D solid volumes, in Computational Mechanics (Springer, 2020), pp. 1–22. Google Scholar
    • 8. C. Carton, L. Georges, P. Geuzaine, Y. Detandt and S. Caro, Further analysis of a hybrid CAA method based on Argo and Actran/LA: Case of the Helmholtz resonator, 15th AIAA/CEAS Aeroacoustics Conf., No. 3115, 2009. Google Scholar
    • 9. J. Manera, Y. Detandt, D. D’Udekem and S. Detry, Aero-acoustic predictions of automotive instrument panel ducts, SAE NVH Conf., SAE 09NVC-0131, St. Charles, IL, 2009. CrossrefGoogle Scholar
    • 10. M. Piellard and C. Bailly, A hybrid method for computational aeroacoustic applied to internal flows, NAG-DAGA Int. Conf. Acoustics, 2009. Google Scholar
    • 11. R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76(8) (1971) 1905–1915. CrossrefGoogle Scholar
    • 12. R. L. Hardy, Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988, Comput. Math. Appl. 19(8–9) (1990) 163–208. CrossrefGoogle Scholar
    • 13. T. Rendall and C. Allen, Unified fluid–structure interpolation and mesh motion using radial basis functions, Int. J. Numer. Methods Eng. 74(10) (2008) 1519–1559. CrossrefGoogle Scholar
    • 14. M. Cordero-Gracia, M. Gómez and E. Valero, A radial basis function algorithm for simplified fluid-structure data transfer, Int. J. Numer. Methods Eng. 99(12) (2014) 888–905. CrossrefGoogle Scholar
    • 15. S. Schoder, K. Roppert, M. Weitz, C. Junger and M. Kaltenbacher, Aeroacoustic source term computation based on radial basis function, Int. J. Numer. Methods Eng. 121 (2020) 2051–2067. CrossrefGoogle Scholar
    • 16. M. Kaltenbacher, M. Escobar, I. Ali and S. Becker, Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustics analogy, Int. J. Numer. Methods Fluids 63(9) (2010) 1103–1122. CrossrefGoogle Scholar
    • 17. M. Kaltenbacher, A. Hüppe, A. Reppenhagen, F. Zenger and S. Becker, Computational aeroacoustics for rotating systems with application to an axial fan, AIAA J. 55(11) (2017) 3831–3838. CrossrefGoogle Scholar
    • 18. P. Croaker, N. Kessissoglou, R. Kinns and S. Marburg, Fast low-storage method for evaluating Lighthills volume quadrupoles, AIAA J. 51(4) (2013) 867–884. CrossrefGoogle Scholar
    • 19. J. Hardin and D. Pope, An acoustic/viscous splitting technique for computational aeroacoustics, Theor. Comput. Fluid Dyn. 6(5–6) (1994) 323–340. CrossrefGoogle Scholar
    • 20. W. Z. Shen and J. N. Sorensen, Aeroacoustic modelling of low-speed flows, Theor. Comput. Fluid Dyn. 13(4) (1999) 271–289. CrossrefGoogle Scholar
    • 21. R. Ewert and W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, J. Comput. Phys. 188(2) (2003) 365–398. CrossrefGoogle Scholar
    • 22. J. Seo and Y. J. Moon, Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers, AIAA J. 43(8) (2005) 1716–1724. CrossrefGoogle Scholar
    • 23. C.-D. Munz, M. Dumbser and S. Roller, Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature, J. Comput. Phys. 224(1) (2007) 352–364. CrossrefGoogle Scholar
    • 24. M. M. Zdravkovich, Flow Around Circular Cylinders: Volume 2: Applications (Oxford University Press, 1997). CrossrefGoogle Scholar
    • 25. A. Hüppe and M. Kaltenbacher, Comparison of source term formulations for computational aeroacoustics, 19th AIAA/CEAS Aeroacoustics Conf., No. 2170, 2013. CrossrefGoogle Scholar
    • 26. M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics (Springer, Berlin, Heidelberg, 2015). CrossrefGoogle Scholar
    • 27. F. Krömer, J. Müller and S. Becker, Investigation of aeroacoustic properties of low pressure axial fans with different blade stacking, AIAA J. 56(4) (2018) 1507–1518. CrossrefGoogle Scholar
    • 28. R. Ewert, A Hybrid Computational Aeroacoustics Method to Simulate Airframe Noise (Shaker Verlag, 2003). Google Scholar
    • 29. P. Martínez-Lera, C. Schram, H. Bériot and R. Hallez, An approach to aerodynamic sound prediction based on incompressible-flow pressure, J. Sound Vib. 333(1) (2014) 132–143. CrossrefGoogle Scholar
    • 30. P. J. Roache, Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech. 29(1) (1997) 123–160. CrossrefGoogle Scholar
    • 31. I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, P. E. Raad, I. Celik, C. Freitas and H. P. Coleman, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Eng. (2008). Google Scholar