World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Spectral-Element Simulations of Acoustic Waves Induced by a Moving Underwater Source

    https://doi.org/10.1142/S2591728518500408Cited by:4 (Source: Crossref)

    In this study, we model acoustic waves induced by moving acoustic sources in three-dimensional (3D) underwater settings based on a spectral-element method (SEM). Numerical experiments are conducted using the SEM software package SPECFEM3D_Cartesian, which facilitates fluid–solid coupling and absorbing boundary conditions. Examples presented in this paper include an unbounded fluid truncated by using absorbing boundaries, and a shallow-water waveguide modeled as a fluid–solid coupled system based on domain decomposition. In the numerical experiments, the SEM-computed pressures match their analytical counterparts. SEM solutions of pressures at points behind and ahead of modeled moving acoustic sources show a frequency shift, i.e., a Doppler effect, which matches the analytical solution. This paper contributes to the field of passive sonar-based detection of moving acoustic sources, and addresses the challenge of computing wave responses generated by side-scan sonar by using moving sources of continuous signals.

    References

    • 1. B. Friedlander , A passive localization algorithm and its accuracy analysis, IEEE J. Oceanic Eng. 12 (1987) 234–245. CrossrefGoogle Scholar
    • 2. T. Fortmann, Y. Bar-Shalom and M. Scheffe , Sonar tracking of multiple targets using joint probabilistic data association, IEEE J. Oceanic Eng. 8 (1983) 173–184. CrossrefGoogle Scholar
    • 3. Y. T. Chan, G. H. Niezgoda and S. P. Morton , Passive sonar detection and localization by matched velocity filtering, IEEE J. Oceanic Eng. 20 (1995) 179–189. CrossrefGoogle Scholar
    • 4. T.-K. Hong , Seismic investigation of the 26 March 2010 sinking of the South Korean naval vessel Cheonanham, Bull. Seismol. Soc. Am. 101(4) (2011) 1554–1562. CrossrefGoogle Scholar
    • 5. S. G. Kim and Y. Gitterman , Underwater explosion (UWE) analysis of the ROKS Cheonan incident, Pure Appl. Geophys. 170(4) (2013) 547–560. CrossrefGoogle Scholar
    • 6. C. W. Clark, M. W. Brown and P. Corkeron , Visual and acoustic surveys for North Atlantic right whales, Eubalaena glacialis, in Cape Cod Bay, Massachusetts, 2001–2005: Management implications, Mar. Mam. Sci. 26(4) (2010) 837–854. CrossrefGoogle Scholar
    • 7. F. Jensen, W. Kuperman, M. Porter and H. Schmidt , Computational Ocean Acoustics (Springer, New York, 1994). Google Scholar
    • 8. P. C. Etter , Advanced applications for underwater acoustic modeling, Adv. Acoust. Vib. (2012). Google Scholar
    • 9. F. D. Tappert , The parabolic approximation method, in Wave Propagation and Underwater Acoustics, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 1977), pp. 224–287. CrossrefGoogle Scholar
    • 10. S. Grilli, T. Pedersen and P. Stepanishen , A hybrid boundary element method for shallow water acoustic propagation over an irregular bottom, Eng. Anal. Bound. Elem. 21(2) (1998) 131–145. CrossrefGoogle Scholar
    • 11. M. H. Aliabadi and D. Rooke , The boundary element method, Numer. Fract. Mech. (1991) 90–139. CrossrefGoogle Scholar
    • 12. J. A. F. Santiago and L. C. Wrobel , A boundary element model for underwater acoustics in shallow water, Comput. Model. Eng. Sci. 1(3) (2000) 73–80. Google Scholar
    • 13. C. Jeong, S.-W. Na and L. F. Kallivokas , Near-surface localization and shape identification of a scatterer embedded in a halfplane using scalar waves, J. Comput. Acoust. 17(03) (2009) 277–308. LinkGoogle Scholar
    • 14. G. Manolis , Elastic wave scattering around cavities in inhomogeneous continua by the BEM, J. Sound Vib. 266(2) (2003) 281–305. CrossrefGoogle Scholar
    • 15. J. E. Murphy and S. A. Chin-Bing , A finite element model for ocean acoustic propagation, Math. Comput. Model. 11 (1988) 70–74. CrossrefGoogle Scholar
    • 16. M. J. Isakson, B. Goldsberry and N. P. Chotiros , A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides, J. Acoust. Soc. Am. 136 (2014) EL206–EL211. CrossrefGoogle Scholar
    • 17. B. Engquist and A. Majda , Absorbing boundary conditions for numerical simulation of waves, Proc. Nat. Acad. Sci. 74 (1977) 1765–1766. CrossrefGoogle Scholar
    • 18. R. Clayton and B. Engquist , Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 67 (1977) 1529–1540. CrossrefGoogle Scholar
    • 19. J. B. Keller and D. Givoli , Exact non-reflecting boundary conditions, J. Comput. Phys. 82 (1989) 172–192. CrossrefGoogle Scholar
    • 20. D. Komatitsch, C. Barnes and J. Tromp , Wave propagation near a fluid-solid interface: A spectral-element approach, Geophysics 65(2) (2000) 623–631. CrossrefGoogle Scholar
    • 21. D. Komatitsch, J. Ritsema and J. Tromp , The spectral-element method, Beowulf computing, and global seismology, Science 298(5599) (2002) 1737–1742. CrossrefGoogle Scholar
    • 22. D. Komatitsch and J. Tromp , Spectral-element simulations of global seismic wave propagation — I. Validation, Geophys. J. Int. 149 (2002) 390–412. CrossrefGoogle Scholar
    • 23. E. Chaljub and B. Vallette , Spectral element modelling of three-dimensional wave propagation in a self-gravitating earth with an arbitrarily stratified outer core, Geophys. J. Int. 158(1) (2004) 131–141. CrossrefGoogle Scholar
    • 24. D. Komatitsch, S. Tsuboi and J. Tromp , The spectral-element method in seismology, in Seismic Earth: Array Analysis of Broadband Seismograms (The American Geophysical Union, 2005), pp. 205–227. CrossrefGoogle Scholar
    • 25. P. Cristini and D. Komatitsch , Some illustrative examples of the use of a spectral-element method in ocean acoustics, J. Acoust. Soc. Am. 131 (2012) EL229–EL235. CrossrefGoogle Scholar
    • 26. Z. Xie, R. Matzen, P. Cristini, D. Komatitsch and R. Martin , A perfectly matched layer for fluid–solid problems: Application to ocean-acoustics simulations with solid ocean bottoms, J. Acoust. Soc. Am. 140(1) (2016) 165–175. CrossrefGoogle Scholar
    • 27. D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher, F. Magnoni, Q. Liu, C. Blitz et al., Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, Geophys. J. Int. 186(2) (2011) 721–739. CrossrefGoogle Scholar
    • 28. R. Stacey , Improved transparent boundary formulations for the elastic-wave equation, Bull. Seismol. Soc. Am. 78(6) (1988) 2089–2097. CrossrefGoogle Scholar
    • 29. A. Quarteroni, A. Tagliani and E. Zampieri , Generalized galerkin approximations of elastic waves with absorbing boundary conditions, Comput. Methods Appl. Mech. Eng. 163(1–4) (1998) 323–341. CrossrefGoogle Scholar
    • 30. D. Komatitsch and J. Tromp , Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int. 139 (1999) 806–822. CrossrefGoogle Scholar
    • 31. H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron, J. R. Shewchuk, and J. Xu , Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Methods Appl. Mech. Eng. 152(1) (1998) 85–102. CrossrefGoogle Scholar
    • 32. R. Courant, K. Friedrichs and H. Lewy , Uber die partiellen Differenzengleichungen der mathematischen Physik|Springer Link, Math. Ann. 100 (1928) 32–74. CrossrefGoogle Scholar
    • 33. D. Komatitsch, S. Tsuboi and J. Tromp , The spectral-element method in seismology, in Geophysical Monograph Series, eds. A. Levander and G. Nolet , Vol. 157 (American Geophysical Union, Washington, DC, 2005), pp. 205–227. Google Scholar
    • 34. L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders , The Fundamentals of Acoustics, 4th edn. (John Wiley & Sons, New York, 2000). Google Scholar