World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Haptic Guidance Based on All-Optical Ultrasound Distance Sensing for Safer Minimally Invasive Fetal Surgery by:14 (Source: Crossref)
    This article is part of the issue:

    By intervening during the early stage of gestation, fetal surgeons aim to correct or minimize the effects of congenital disorders. As compared to postnatal treatment of these disorders, such early interventions can often actually save the life of the fetus and also improve the quality of life of the newborn. However, fetal surgery is considered one of the most challenging disciplines within Minimally Invasive Surgery (MIS), owing to factors such as the fragility of the anatomic features, poor visibility, limited manoeuvrability, and extreme requirements in terms of instrument handling with precise positioning. This work is centered on a fetal laser surgery procedure treating placental disorders. It proposes the use of haptic guidance to enhance the overall safety of this procedure and to simplify instrument handling. A method is described that provides effective guidance by installing a forbidden region virtual fixture over the placenta, thereby safeguarding adequate clearance between the instrument tip and the placenta. With a novel application of all-optical ultrasound distance sensing in which transmission and reception are performed with fibre optics, this method can be used with a sole reliance on intraoperatively acquired data. The added value of the guidance approach, in terms of safety and performance, is demonstrated in a series of experiments with a robotic platform.

    NOTICE: Prior to using any material contained in this paper, the users are advised to consult with the individual paper author(s) regarding the material contained in this paper, including but not limited to, their specific design(s) and recommendation(s).


    • 1. T. Robinson and G. Stiegmann , Minimally invasive surgery, Endoscopy 36 (1) (2004) 48–51. CrossrefGoogle Scholar
    • 2. N. S. Adzick, E. A. Thom, C. Y. Spong, J. W. Brock III, P. K. Burrows, M. P. Johnson, L. J. Howell, J. A. Farrell, M. E. Dabrowiak, L. N. Sutton et al., A randomized trial of prenatal versus postnatal repair of myelomeningocele, New Eng. J. Med. 364 (11) (2011) 993–1004. CrossrefGoogle Scholar
    • 3. S. G. Petersen, K. S. Gibbons, F. I. Luks, L. Lewi, A. Diemert, K. Hecher, J. E. Dickinson, J. J. Stirnemann, Y. Ville, R. Devlieger et al., The impact of entry technique and access diameter on prelabour rupture of membranes following primary fetoscopic laser treatment for twin-twin transfusion syndrome, Fetal Diagnosis Therapy (2016). CrossrefGoogle Scholar
    • 4. P. Klaritsch, K. Albert, T. Van Mieghem, L. Gucciardo, E. Done, B. Bynens and J. Deprest , Instrumental requirements for minimal invasive fetal surgery, BJOG: An Int. J. Obstetrics Gynaecol. 116 (2) (2009) 188–197. CrossrefGoogle Scholar
    • 5. M. A. Urig, W. H. Clewell and J. P. Elliott , Twin-twin transfusion syndrome, Am. J. Obstetrics Gynecol. 163 (5) (1990) 1522–1526. CrossrefGoogle Scholar
    • 6. R. Ruano, C. Rodo, J. L. Peiro, A. A. Shamshirsaz, S. Haeri, M. L. Nomura, E. M. A. Salustiano, K. K. de Andrade, H. Sangi-Haghpeykar, E. Carreras and M. A. Belfort , Fetoscopic laser ablation of placental anastomoses in twintwin transfusion syndrome using solomon technique, Ultrasound Obstetrics Gynecol. 42 (4) (2013) 434–439. CrossrefGoogle Scholar
    • 7. G. E. Chalouhi, M. Essaoui, J. Stirnemann, T. Quibel, B. Deloison, L. Salomon and Y. Ville , Laser therapy for twin-to-twin transfusion syndrome (ttts), Prenat. Diagn. 31 (7) (2011) 637–646. CrossrefGoogle Scholar
    • 8. P. Van Peborgh, C. Rambaud and Y. Ville , Effect of laser coagulation on placental vessels: Histological aspects, Fetal Diagno. Therapy 12 (1997) 32–35. CrossrefGoogle Scholar
    • 9. J. Deprest, G. Barki, Y. Yille, K. Hecher, E. Gratacos and K. Nicolaides , Endoscopy in Fetal Medicine, 3 edn. (EndoPress, US, 2015). Google Scholar
    • 10. C. Preusche, T. Hulin and G. Hirzinger , Haptic rendering and control, Human Haptic Perception: Basics and Applications, ed. M. Grunwald (Birkhäuser Basel, 2008), pp. 411–426. CrossrefGoogle Scholar
    • 11. M. A. Vitrani, C. Poquet and G. Morel , Applying virtual fixtures to the distal end of a minimally invasive surgery instrument, IEEE Trans. Robot. 33 (1) (2017) 114–123. CrossrefGoogle Scholar
    • 12. B. L. Davies, K. L. Fan, R. D. Hibberd, M. Jakopec and S. J. Harris , Acrobot - using robots and surgeons synergistically in knee surgery, in Proc. 8th Int. Conf. on Advanced Robotics, 1997. ICAR ’97 (1997), pp. 173–178. Google Scholar
    • 13. J. Goffin, K. Van Brussel, K. Martens, J. Vander Sloten, R. Van Audekercke and M.-H. Smet , Three-dimensional computed tomography-based, personalized drill guide for posterior cervical stabilization at c1-c2, Spine 26 (12) (2001) 1343–1347. CrossrefGoogle Scholar
    • 14. M. Luz, D. Manzey, S. Modemann and G. Strauss , Less is sometimes more: A comparison of distance-control and navigated-control concepts of image-guided navigation support for surgeons, Ergonomics 58 (3) (2015) 383–393. CrossrefGoogle Scholar
    • 15. T. Xia, C. Baird, G. Jallo, K. Hayes, N. Nakajima, N. Hata and P. Kazanzides , An integrated system for planning, navigation and robotic assistance for skull base surgery, Int. J. Med. Robot. 4 (4) (2008) 321–30. CrossrefGoogle Scholar
    • 16. L. B. Rosenberg , Virtual fixtures as tools to enhance operator performance in telepresence environments, Proc. SPIE 2057 (1993) 10–21. CrossrefGoogle Scholar
    • 17. S. A. Bowyer, B. L. Davies and F. R. y Baena , Active constraints/virtual fixtures: A survey, IEEE Trans. Robot. 30 (1) (2014) 138–157. CrossrefGoogle Scholar
    • 18. C. Nimsky, O. Ganslandt, S. Cerny, P. Hastreiter, G. Greiner and R. Fahlbusch , Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging, Neurosurgery 47 (5) (2000) 1070–1080. CrossrefGoogle Scholar
    • 19. P. Daga, G. Winston, M. Modat, M. White, L. Mancini, M. J. Cardoso, M. Symms, J. Stretton, A. W. McEvoy, J. Thornton, C. Micallef, T. Yousry, D. J. Hawkes, J. S. Duncan and S. Ourselin , Accurate localization of optic radiation during neurosurgery in an interventional MRI suite, IEEE Trans. Med. Imag. 31 (4) (2012) 882–891. CrossrefGoogle Scholar
    • 20. J. Jang, H. W. Kim and Y. S. Kim , Construction and verification of a safety region for brain tumor removal with a telesurgical robot system, Mini. Invasive Therapy Alli. Technol. 23 (6) (2014) 333–340. CrossrefGoogle Scholar
    • 21. G. R. Sutherland, Y. Maddahi, L. S. Gan, S. Lama and K. Zareinia , Robotics in the neurosurgical treatment of glioma, Surg. Neurol. Int. 6 (1) (2015) S1–S8. CrossrefGoogle Scholar
    • 22. A. Nakazawa, K. Nanri, K. Harada, S. Tanaka, H. Nukariya, Y. Kurose, N. Shono, H. Nakatomi, A. Morita, E. Watanabe, N. Sugita and M. Mitsuishi , Feedback methods for collision avoidance using virtual fixtures for robotic neurosurgery in deep and narrow spaces, in 2016 6th IEEE Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), (2016), pp. 247–252. Google Scholar
    • 23. Y. Song, J. Totz, S. Thompson, S. Johnsen, D. Barratt, C. Schneider, K. Gurusamy, B. Davidson, S. Ourselin, D. Hawkes and M. J. Clarkson , Locally rigid, vessel-based registration for laparoscopic liver surgery, Int. J. Comput. Assist. Radiol. Surg. 10 (12) (2015) 1951–1961. CrossrefGoogle Scholar
    • 24. A. L. Trejos, S. E. Salcudean, F. Sassani and S. Lichtenstein , On the feasibility of a moving support for surgery on the beating heart, Second International Conference Proceedings, Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, Cambridge, UK, September 19–22, 1999. eds. C. TaylorA. Colchester (Springer Berlin Heidelberg, 1999), pp. 1088–1097. Google Scholar
    • 25. Y. Nakamura, K. Kishi and H. Kawakami , Heartbeat synchronization for robotic cardiac surgery, in Proc. 2001 ICRA. IEEE Int. Conf. Robotics and Automation, Vol. 2 (2001), pp. 2014–2019. Google Scholar
    • 26. F. Rydén and H. J. Chizeck , Forbidden-region virtual fixtures from streaming point clouds: Remotely touching and protecting a beating heart, in 2012 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, (2012), pp. 3308–3313. Google Scholar
    • 27. O. Bebek and M. C. Cavusoglu , Intelligent control algorithms for robotic-assisted beating heart surgery, IEEE Trans. Robot. 23 (3) (2007) 468–480. CrossrefGoogle Scholar
    • 28. S. G. Yuen, P. M. Novotny and R. D. Howe , Quasiperiodic predictive filtering for robot-assisted beating heart surgery, in 2008 IEEE Int. Conf. Robotics and Automation, (2008), pp. 3875–3880. Google Scholar
    • 29. M. Bowthorpe, M. Tavakoli, H. Becher and R. Howe , Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery, IEEE J. Biomed. Health Inf. 18 (1) (2014) 157–166. CrossrefGoogle Scholar
    • 30. J. Ren, R. V. Patel, K. A. McIsaac, G. Guiraudon and T. M. Peters , Dynamic 3-d virtual fixtures for minimally invasive beating heart procedures, IEEE Trans. Med. Imag. 27 (8) (2008) 1061–1070. CrossrefGoogle Scholar
    • 31. V. Francoise, A. Sahbani and G. Morel , A comanipulation device for orthopedic surgery that generates geometrical constraints with real-time registration on moving bones, in 2011 IEEE Int. Conf. Robotics and Biomimetics, (2011), pp. 38–43. Google Scholar
    • 32. B. Becker, R. MacLachlan, L. Lobes and C. Riviere , Position-based virtual fixtures for membrane peeling with a handheld micromanipulator, in IEEE Int. Conf. Robotics and Automation (ICRA), (2012), pp. 1075–1080. Google Scholar
    • 33. M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor and J. Kang , Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009: 12th Int. Conf. Proc. Part I, London, UK, September 20–24, 2009, eds. G.-Z. YangD. HawkesD. RueckertA. NobleC. Taylor (2009), pp. 108–115. Google Scholar
    • 34. Y. Zhan, X. G. Duan and J. X. Li , Review of comanipulation robot in surgery, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), (2015), pp. 1466–1471. Google Scholar
    • 35. G. Dwyer, F. Chadebecq, M. T. Amo, C. Bergeles, E. Maneas, V. Pawar, E. V. Poorten, J. Deprest, S. Ourselin, P. D. Coppi, T. Vercauteren and D. Stoyanov , A continuum robot and control interface for surgical assist in fetoscopic interventions, IEEE Robot. Automat. Lett. 2 (3) (2017) 1656–1663. CrossrefGoogle Scholar
    • 36. B. T. Cox and P. C. Beard , Fast calculation of pulsed photoacoustic fields in fluids using k-space methods, J. Acoust. Soc. Am. 117 (6) (2005) 3616–3627. CrossrefGoogle Scholar
    • 37. P. C. Beard and T. N. Mills , Miniature optical fibre ultrasonic hydrophone using a fabry-perot polymer film interferometer, Electron. Lett. 33 (9) (1997) 801–803. CrossrefGoogle Scholar
    • 38. R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou and A. E. Desjardins , Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging, Biomed. Opt. Exp. 6 (4) (2015) 1502. CrossrefGoogle Scholar
    • 39. S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang, E. J. Alles, S. Ourselin, P. C. Beard, I. Papakonstantinou, I. P. Parkin and A. E. Desjardins , Carbon-nanotubepdms composite coatings on optical fibers for all-optical ultrasound imaging, Adv. Functi. Mater. 26 (46) (2016) 8390–8396. CrossrefGoogle Scholar
    • 40. E. Z. Zhang and P. C. Beard , Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection, in Proc. of SPIE, Photons Plus Ultrasound: Imaging and Sensing, eds. A. A. OraevskyL. V. Wang, Vol. 9323 (2015), p. 932311. Google Scholar
    • 41. E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. Finlay, S. J. West, T. Vercauteren and A. E. Desjardins , Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds, Phys. Med. Biol. (2017, in press). Google Scholar
    • 42. P. K. Verma, V. F. Humphrey and F. A. Duck , Broadband measurements of the frequency dependence of attenuation coefficient and velocity in amniotic fluid, urine and human serum albumin solutions, Ultrasound Med. Biol. 31 (10) (2005) 1375–1381. CrossrefGoogle Scholar
    • 43. P. Mitra and G. Niemeyer , Model-mediated telemanipulation, Int. J. Robot. Res. 27 (2) (2008) 253–262. CrossrefGoogle Scholar
    • 44. S. Thrun, W. Burgard and D. Fox , Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) (The MIT Press, 2005). Google Scholar
    • 45. E. J. Alles, S. Noimark, E. Zhang, P. C. Beard and A. E. Desjardins , Pencil beam all-optical ultrasound imaging, Biomed. Opt. Express 7 (9) (2016) 3696–3704. CrossrefGoogle Scholar
    • 46. C. Gruijthuijsen, A. Javaux, A. Devreker, T. Vercauteren, S. Ourselin, D. Stoyanov, J. Deprest, D. Reynaerts and E. Vander Poorten , Haptic guidance schemes for robot-asssited minimal invasive fetal surgery, in Proc. of the 6th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, (2016), pp. 1–2. Google Scholar
    • 47. W. Xia, Y. Ginsberg, S. J. West, D. I. Nikitichev, S. Ourselin, A. L. David and A. E. Desjardins , Coded excitation ultrasonic needle tracking: An in vivo study, Med. Phys. 43 (7) (2016) 4065–4065. CrossrefGoogle Scholar