World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends

    https://doi.org/10.1142/S2301385014300017Cited by:266 (Source: Crossref)

    This paper provides a brief overview on the recent advances of small-scale unmanned aerial vehicles (UAVs) from the perspective of platforms, key elements, and scientific research. The survey starts with an introduction of the recent advances of small-scale UAV platforms, based on the information summarized from 132 models available worldwide. Next, the evolvement of the key elements, including onboard processing units, navigation sensors, mission-oriented sensors, communication modules, and ground control station, is presented and analyzed. Third, achievements of small-scale UAV research, particularly on platform design and construction, dynamics modeling, and flight control, are introduced. Finally, the future of small-scale UAVs' research, civil applications, and military applications are forecasted.

    This paper was recommended for publication in its revised form by the editors-in-chief.

    References

    • P. Abbeelet al., Proc. Adv. Neural Inf.  (2007). Google Scholar
    • P. Abbeel, A. Coates and A. Y. Ng, Int. J. Robot. Res. 29(13), 1 (2010), DOI: 10.1177/0278364910371999. Google Scholar
    • A.   Abdessameud and A.   Tayebi , Motion Coordination for VTOL Unmanned Aerial Vehicles: Attitude Synchronisation and Formation Control ( Springer , 2013 ) . CrossrefGoogle Scholar
    • S. Ansari, R. Zbikowski and K. Knowles, Prog. Aerosp. Sci. 42(2), 129 (2006), DOI: 10.1016/j.paerosci.2006.07.001. CrossrefGoogle Scholar
    • R.   Austin , Unmanned Aircraft Systems: UAVs Design, Development, and Deployment ( Wiley , 2010 ) . CrossrefGoogle Scholar
    • S. Baek, F. Bermudez and R. Fearing, Intelligent Robots and Systems (San Francisco, CA, 2011) pp. 286–292. Google Scholar
    • R. K.   Barnhart et al. (eds.) , Introduction to Unmanned Aircraft System ( CRC Press , 2012 ) . Google Scholar
    • R. W.   Beard and T. W.   McLain , Small Unmanned Aircraft: Theory and Practice ( Princeton University Press , 2012 ) . CrossrefGoogle Scholar
    • L. Biacino and G. Gerla, Arch. Math. Logic 41(7), 643 (2002), DOI: 10.1007/s001530100128. CrossrefGoogle Scholar
    • D. J.   Biezad , Integrated Navigation and Guidance Systems ( AIAA , 1999 ) . CrossrefGoogle Scholar
    • G. Caiet al., J. Mechatron. 21(5), 803 (2011), DOI: 10.1016/j.mechatronics.2011.02.002. CrossrefGoogle Scholar
    • G.   Cai , B. M.   Chen and T. H.   Lee , Unmanned Rotorcraft Systems ( Springer , New York , 2011 ) . CrossrefGoogle Scholar
    • G. Caiet al., J. Am. Helicopter Soc. 57(1), 1 (2012), DOI: 10.4050/JAHS.57.012004. CrossrefGoogle Scholar
    • J. Caetanoet al., Int. J. Micro Air Vehicles 5(4), (2013), DOI: 10.1260/1756-8293.5.4.273. Google Scholar
    • H. Chao, Y. Cao and Y. Chen, Int. J. Control Autom. 8(1), 36 (2010), DOI: 10.1007/s12555-010-0105-z. CrossrefGoogle Scholar
    • A. B.   Chatfield , Fundamentals of High Accuracy Inertial Navigation ( AIAA , 1997 ) . CrossrefGoogle Scholar
    • B. M.   Chen , Robust and Hinfty Control ( Springer , 2000 ) . CrossrefGoogle Scholar
    • B. M. Chenet al., IEEE Trans. Autom. Control 48(3), 427 (2003), DOI: 10.1109/TAC.2003.809148. CrossrefGoogle Scholar
    • P. Chirarattananon, K. Ma and R. J. Wood, Adaptive control for takeoff, hovering, and landing of a robotic fly, Intelligent Robots and Systems (2013) pp. 3808–3815. Google Scholar
    • G.   Chowdhary et al. , Flight test results of adaptive controllers in presence of severe structural damage , AIAA Guidance, Navigation, and Control ( 2010 ) . Google Scholar
    • M. La Civita, W. C. Messner and T. Kanade, Modeling of small-scale helicopters with integrated first-principles and system-identification techniques, Forum of the American Helicopter Society (2002) pp. 2505–2516. Google Scholar
    • Competition link, DARPA UAVForge Competition, Available at www.uavforge.net/ . Google Scholar
    • Competition link, International Aerial Robotics Competition, Available at www.aerialroboticscompetition.org/ . Google Scholar
    • Competition link, International UAV Innovation Grand Prix, Available at www.uavgp.com.cn/Home/Index . Google Scholar
    • K.   Dalamagkidis , K. P.   Valavanis and L. A.   Piegl (eds.) , On Integrating Unmanned Aircraft Systems into the National Airspace System , 2nd edn. ( Springer , 2012 ) . CrossrefGoogle Scholar
    • X. Denget al., IEEE Trans. Robot. 22(4), 776 (2006). CrossrefGoogle Scholar
    • A. Dorobantuet al., J. Aircraft 50(4), 1117 (2013), DOI: 10.2514/1.C032065. CrossrefGoogle Scholar
    • P. J. Duhamelet al., Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor, Robotics and Automation (2012) pp. 4228–4235. Google Scholar
    • B. Finio, N. Perez-Arancibia and R. J. Wood, System identification, modeling, and optimization of an insect-sized flapping-wing micro air vehicle, Intelligent Robots and Systems (2011) pp. 1389–1396. Google Scholar
    • R. L. Finn and D. Wright, Comput. Law Sec. Rev. 28(2), 184 (2012), DOI: 10.1016/j.clsr.2012.01.005. CrossrefGoogle Scholar
    • C. Garcia and P. Morari, J. Automatica 25(3), 335 (1989). CrossrefGoogle Scholar
    • R. Garcia and K. Valavanis, J. Intell. Robot. Syst. 54(1), 423 (2009), DOI: 10.1007/s10846-008-9273-y. CrossrefGoogle Scholar
    • J. W. Gerdes, S. K. Gupta and S. Wilkerson, J. Mech. Robot. 4(2), 1 (2012), DOI: 10.1115/1.4005525. Google Scholar
    • J. A. Grauer, Modeling and system identification of an ornithopter flight dynamics model, Doctoral dissertation, The University of Maryland (2012) . Google Scholar
    • J.   Grauer and J.   Hubbard , A multibody model of an ornithopter , Proc. AIAA Aerospace Sciences Meeting ( 2009 ) . Google Scholar
    • M.   Groen et al. , Improving flight performance of the flapping wing MAV DelFly II , Proc. International Micro Air Vehicle ( 2010 ) . Google Scholar
    • S. G. Gupta, M. M. Ghonge and P. M. Jawandhiya, Int. J. Adv. Res. Comput. Eng. Technol. 2(4), 1646 (2013). Google Scholar
    • R.   Harmon et al. , Experimental determination of ornithopter membrane wing shapes used for simple aerodynamic modeling , AIAA Atmospheric Flight Mechanics ( 2008 ) . Google Scholar
    • A. M. Hasanet al., Aust. J. Basic Appl. Sci. 3(2), 943 (2009). Google Scholar
    • W. Hoburg and R. Tedrake, System identification of post stall aerodynamics for UAV perching, AIAA Infotech @ Aerospace (2009) pp. 1–9. Google Scholar
    • N. V. Hofferet al., J. Intell. Robot. Syst. 74(1), 129 (2014), DOI: 10.1007/s10846-013-9931-6. CrossrefGoogle Scholar
    • G. M.   Hoffmann et al. , Quadrotor helicopter flight dynamics and control: Theory and experiment , AIAA Guidance, Navigation, and Control ( 2007 ) . Google Scholar
    • J. How, B. Bethke, A. Frank, D. Dale and J. Vian, Realtime indoor autonomous vehicle test environment, IEEE Control. Syst. Mag. 28(2) (2008) 51–64 . Google Scholar
    • C. Huet al., System identification of a small UAVs speeding up process before take-off, 2004 Asian Control (2004) pp. 392–395. Google Scholar
    • J. S.   Jang and C.   Tomlin , Design and implementation of a low cost, hierarchical and modular avionics architecture for the DragonFly UAVs , AIAA Guidance, Navigation, and Control ( 2002 ) . Google Scholar
    • F.   Jin , T.   Hiroshi and S.   Shigeru , Development of small unmanned aerial vehicle and flight controller design , AIAA Atmospheric Flight Mechanics ( 2007 ) . Google Scholar
    • E. N. Johnson and S. K. Kannan, J. Guid. Control Dynam. 28(3), 524 (2005), DOI: 10.2514/1.6271. CrossrefGoogle Scholar
    • E. N.   Johnson et al. , Flight test results of autonomous fixed-wing UAV transitions to and from stationary hover , AIAA Guidance, Navigation, and Control ( 2006 ) . Google Scholar
    • F. Kendoul, J. Field Robot. 29(2), 315 (2012), DOI: 10.1002/rob.20414. CrossrefGoogle Scholar
    • F. Kendoul, Z. Yu and K. Nonami, J. Field Robot. 27(3), 311 (2010). CrossrefGoogle Scholar
    • H. S.   Khalil , Nonlinear Systems , 2nd edn. ( Prentice Hall , 2002 ) . Google Scholar
    • H. Kim, D. Shim and S. Sastry, Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles, American Control (2002) pp. 3576–3581. Google Scholar
    • A. Klaptoczet al., Euler spring collision protection for flying robots, Proc. Intelligent Robots and Systems (2013) pp. 1886–1892. Google Scholar
    • V.   Klein and E. A.   Morelli , Aircraft System Identification: Theory and Practice ( AIAA , 2006 ) . CrossrefGoogle Scholar
    • C. S. Leeet al., Aeronautical J. 115(1163), 29 (2011). CrossrefGoogle Scholar
    • W. E. Leithead, Int. J. Control 73(1), 1001 (1999). CrossrefGoogle Scholar
    • F. L.   Lewis , D.   Vrabie and V. L.   Syrmos , Optimal Control , 3rd edn. ( Wiley , 2012 ) . CrossrefGoogle Scholar
    • G. Limnaios, J. Comput. Model. 4(1), 167 (2014). Google Scholar
    • B.   Mettler , Identification Modeling and Characteristics of Miniature Rotorcraft ( Kluwer Academics Publisher , 2003 ) . CrossrefGoogle Scholar
    • B. Mettleret al., Benchmarking of obstacle field navigation algorithms for autonomous helicopters, Annual Forum of the American Helicopter Society (2010) pp. 1–18. Google Scholar
    • B. Mettler, T. Kanade and M. Tischler, System identification modeling of a model-scale helicopter, Carnegie Mellon University, The Robotics Institute Archive (2000), pp. 1–25 . Google Scholar
    • D.   Mueller , J.   Gerdes and S. K.   Gupta , Incorporation of passive wing folding in flapping wing miniature air vehicles , ASME Mechanism and Robotics ( 2009 ) . Google Scholar
    • News weblink, Amazon testing drones for deliveries, Available at http://www.bbc.co.uk/news/technology-25180906 . Google Scholar
    • K.   Nonami et al. , Autonomous Flying Robots ( Springer , 2010 ) . CrossrefGoogle Scholar
    • A. Ollero and L. Merino, Annu. Rev. Control 28(2), 167 (2004), DOI: 10.1016/j.arcontrol.2004.05.003. CrossrefGoogle Scholar
    • Overview of inertial sensors, Available at www.vectornav.com/support/library . Google Scholar
    • B. W.   Parkinson et al. , Global Positioning System: Theory and Applications   II ( AIAA , 1996 ) . CrossrefGoogle Scholar
    • M. Percinet al., Int. J. MAV 3(4), 217 (2011). Google Scholar
    • N.   Perez-Arancibia et al. , Advanced Robotics ( Montevideo, Uruguay , 2013 ) . Google Scholar
    • J. M. Pflimlin, P. Soures and T. Hamel, A hierarchical control strategy for the autonomous navigation of a ducted fan flying robot, Robotics and Automation (2006) pp. 2491–2496. Google Scholar
    • A. A.   Proctor et al. , Development of an autonomous aerial reconnaissance system at Georgia Tech , Association for Unmanned Vehicle Systems International Unmanned Systems ( 2003 ) . Google Scholar
    • Product link, IMU/INS/INU manufacturer list, Available at damien.douxchamps.net/research/imu/ . Google Scholar
    • Product weblink, List of UAV Manufacturers, Available at www.uavglobal.com/ . Google Scholar
    • Project weblink, Autonomous Control Project, University of New South Wales, Available at seit.unsw.adfa.edu.au/staff/sites/hrp/research/UAV/index.html . Google Scholar
    • Project weblink, Autonomous Flying Vehicle Project, University of Southern California, Available at www-robotics.usc.edu/ãvatar/ . Google Scholar
    • Project weblink, Autonomous Helicopter Project, Carnegie Mellon University, Available at www.cs.cmu.edu/afs/cs/project/chopper/www/ . Google Scholar
    • Project weblink, Dragonfly Robot, Techject Inc., Available at innovations.techject.com/ . Google Scholar
    • Project weblink, Flapping Wing MAV project, University of Maryland, Available at terpconnect.umd.edu/~skgupta/UMdBird/ . Google Scholar
    • Project link, MAVLink Communication Protocol, Available at qgroundcontrol.org/mavlink/start . Google Scholar
    • Project link, Mission Planner Ground Control Station Software, Available at planner.ardupilot.com/ . Google Scholar
    • Project weblink, Nano Hummingbird, AeroVironment, Available at www.avinc.com/nano . Google Scholar
    • Project weblink, Ornithopter Flapping-Wing UAV Project, University of Maryland, Available at www.morpheus.umd.edu/research/flapping-wing-flight/index.html . Google Scholar
    • Project weblink, Ornithopter MAV Project, University of California, Berkeley, Available at robotics.eecs.berkeley.edu/~ronf/Biomimetics.html . Google Scholar
    • Project link, QGroundControl Ground Control Station Software, Available at qgroundcontrol.org/ . Google Scholar
    • Project weblink, Small Unmanned Aircraft Project, Brigham Young University, Available at uavbook.byu.edu/doku.php . Google Scholar
    • Project weblink, SmartBird flapping-wing prototype, Festo Inc., Available at www.festo.com/cms/en_corp/11369.htm . Google Scholar
    • Project weblink, S1000 72-hour flight test, Available at www.dji.com/product/spreading-wings-s1000/video . Google Scholar
    • I. A.   Raptis and K. P.   Valavanis , Linear and Nonlinear Control of Small-Scale Unmanned Helicopters ( Springer , 2011 ) . CrossrefGoogle Scholar
    • J. Ratti and G. Vachtsevanos, J. Intell. Robot. Syst. 65(1), 437 (2012), DOI: 10.1007/s10846-011-9615-z. CrossrefGoogle Scholar
    • Research group weblink, Aerospace Controls Laboratory, Massachusetts Institute of Technology, Available at www.mit.edu/people/jhow/ . Google Scholar
    • Research group weblink, Aerospace Systems and Control Lab, Korea Advanced Institute of Science & Technology, Available at ascl.kaist.ac.kr/systems_09 . Google Scholar
    • Research group weblink, Australian Centre for Field Robotics, University of Sydney, Available at www.acfr.usyd.edu.au/research/ . Google Scholar
    • Research group weblink, Autonomous System Technologies Research Integration Lab, Arizona State University, Available at robotics.asu.edu/ . Google Scholar
    • Research group weblink, Autonomous Vehicle Laboratory, University of Maryland, Available at www.avl.umd.edu/index.html . Google Scholar
    • Research group weblink, Berkeley Aerobot Team, University of California, Berkeley, Available at robotics.eecs.berkeley.edu/bear/index.html . Google Scholar
    • Research group weblink, Biomechanical Engineering Laboratory, Chiba University, Available at www.em.eng.chiba-u.jp/~lab8/research.html . Google Scholar
    • Research group weblink, Bio-Robotics Lab, Purdue University, Available at engineering.purdue.edu/xdeng/index.html . Google Scholar
    • Research group weblink, Centro Automatica y Robotica (C.A.R.), Technical University of Madrid, Available at www.vision4uav.com/ . Google Scholar
    • Research group weblink, Flight Mechanics and Controls Group, Georgia Institute of Technology, Available at controls.ae.gatech.edu/wiki/Main_Page . Google Scholar
    • Research group weblink, Flying Machine Arena Project, ETH Zurich, Available at www.idsc.ethz.ch/Research_DAndrea/Flying_Machine_ Arena . Google Scholar
    • Research group weblink, GRASP Laboratory, University of Pennsylvania, Available at www.kumarrobotics.org/ . Google Scholar
    • Research group weblink, Harvard Microrobotics Lab, Harvard University, Available at micro.seas.harvard.edu/ . Google Scholar
    • Research group weblink, Hybrid Systems Lab, Stanford University, Available at hybrid.eecs.berkeley.edu/starmac/ . Google Scholar
    • Research group weblink, Khalifa University Robotics Institute, Khalifa Unversity, Available at www.kustar.ac.ae/pages/khalifa-university-robotics-institute-kuri/5206 . Google Scholar
    • Research group weblink, Laboratory of Intelligent Systems, Available at EPFL, lis.epfl.ch/ . Google Scholar
    • Research group weblink, Measurement and Control Laboratory, ETH Zurich, Available at www.uav.ethz.ch/ . Google Scholar
    • Research group weblink, Micro Air Vehicle Laboratory, Delft University of Technology, Available at www.lr.tudelft.nl/en/cooperation/facilities/mav-laboratory . Google Scholar
    • Research group weblink, Micro Air Vehicles Laboratory, University of Arizona, Available at devame.engr.arizona.edu/sergey-v-shkarayev#res . Google Scholar
    • Research group weblink, Multidisciplinary Unmanned Aerial Systems Research Group, University of Florida, Available at uav.ifas.ufl.edu/index.shtml . Google Scholar
    • Research group weblink, NUS UAV Team, National University of Singapore, Available at uav.ece.nus.edu.sg/index.html . Google Scholar
    • Research group weblink, Pixhawk Project, Computer Vision and Geometry Lab, ETH Zurich, Available at pixhawk.ethz.ch/overview . Google Scholar
    • Research group weblink, Robotics Design Lab, Queensland University, Available at robotics.itee.uq.edu.au/wiki/pmwiki.php?n=Site.Research . Google Scholar
    • Research group weblink, Robotics & Systems Control Laboratory, Chiba University, Available at mec2.tm.chiba-u.jp/nonami/index.html . Google Scholar
    • Research group weblink, Robotics, Vision and Control Group, University of Seville, Available at grvc.us.es/en/ . Google Scholar
    • Research group weblink, ServoHeli Lab, ShenYang Institute of Automation, Available at uav.sia.cn/team.php?id=4 . Google Scholar
    • Research group weblink, UASTech Lab, Linkoping University, Available at www.ida.liu.se/~patdo/auttek/introdu-ction/index.html . Google Scholar
    • Research group weblink, UAV Research Group, University of Minnesota, Available at www.uav.aem.umn.edu/ . Google Scholar
    • Research group weblink, Unmanned System Research Group, Korea Advanced Institute of Science & Technology, Available at unmanned.kaist.ac.kr/ . Google Scholar
    • Research group weblink, Wright State Center of Excellence, Wright State University, Available at cecs.wright.edu/mav/research/ . Google Scholar
    • Roadmap, Integration of civil unmanned aircraft systems (UAS) in the national airspace system, US Department of Transportation (2013) . Google Scholar
    • Roadmap, Unmanned systems integrated roadmap 20132038, US Office of the Secretary of Defense (2013) . Google Scholar
    • B. Rogetet al., J. Aircraft 46, 2016 (2009), DOI: 10.2514/1.43187. CrossrefGoogle Scholar
    • M. Ryan and H. Su, Classification of flapping wing mechanisms for micro air vehicles, ASME Int. Design Engineering and Computers and Information in Engineering (2012) pp. 105–115. Google Scholar
    • S.   Sastry and M.   Bodson , Adaptive Control: Stability, Convergence, and Robustness ( Prentice-Hall , 1994 ) . Google Scholar
    • D. H. Shim, H. J. Kim and S. Sastry, Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification, IEEE Control Applications (2000) pp. 808–813. Google Scholar
    • T.   Shima (ed.) , UAV Cooperative Decision and Control ( Society for Industrial Mathematics , 2008 ) . Google Scholar
    • S. V.   Shkarayev et al. , Introduction to the Design of Fixed-Wing Micro Air Vehicles Including Three Case Studies ( AIAA , 2007 ) . CrossrefGoogle Scholar
    • W.   Shyy et al. , An Introduction to Flapping Wing Aerodynamics ( Cambridge University Press , 2013 ) . CrossrefGoogle Scholar
    • Software weblink, QNX Operating System, Available at www.qnx.com/ . Google Scholar
    • Software weblink, RTLinux Operating System, Available at en.wikipedia.org/wiki/RTLinux . Google Scholar
    • Software weblink, VxWorks Operating System, Available at www.windriver.com/products/vxworks/ . Google Scholar
    • P. B. Sujit, S. Saripalli and J. B. Sousa, IEEE Control Syst. 34(1), 42 (2014), DOI: 10.1109/MCS.2013.2287568. CrossrefGoogle Scholar
    • R. S.   Sutton and A. G.   Barto , Reinforcement Learning: An Introduction ( MIT Press , 1998 ) . Google Scholar
    • M. Takahashi, G. Schulein and M. Whalley, Flight control law design and development for an autonomous rotorcraft, Annual Forum of the American Helicopter Society (2008) pp. 1652–1671. Google Scholar
    • M. B. Tischler et al. , CONDUIT — A new multidisciplinary integration environment for flight control development , AIAA Guidance, Navigation, and Control ( 1997 ) . Google Scholar
    • M. B.   Tischler and R. K.   Remple , Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples ( AIAA , 2006 ) . Google Scholar
    • E. Ulrich, Flight Dynamics and Control of Micro-Scaled Robotic Samara (Winged-Seed) Rotorcraft, Doctoral dissertation, University of Maryland (2013) . Google Scholar
    • K. P.   Valavanis (ed.) , Advances in Unmanned Aerial Vehicles ( Springer , 2007 ) . CrossrefGoogle Scholar
    • K. P.   Valavanis et al. (eds.) , Unmanned Aircraft Systems ( Springer , 2010 ) . Google Scholar
    • K. P.   Valavanis , P.   Oh and L. A.   Piegl (eds.) , Unmanned Aircraft Systems ( Springer , 2009 ) . CrossrefGoogle Scholar
    • K. P.   Valavanis and G. J.   Vachtsevanos (eds.) , Handbook of Unmanned Aerial Vehicles (UAVs) ( Springer , 2013 ) . Google Scholar
    • C. Wagteret al., Autonomous wind tunnel free-flight of a flapping wing MAV, Advances in Aerospace Guidance, Navigation and Control (2013) pp. 603–621. Google Scholar
    • R. J. Woodet al., Microrobotics using composite materials: The micromechanical flying insect thorax, Robotics and Automation (2003) pp. 1842–1849. Google Scholar
    • R.   Yanushevsky , Guidance of Unmanned Aerial Vehicles ( CRC Press , 2011 ) . CrossrefGoogle Scholar