A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends
Abstract
This paper provides a brief overview on the recent advances of small-scale unmanned aerial vehicles (UAVs) from the perspective of platforms, key elements, and scientific research. The survey starts with an introduction of the recent advances of small-scale UAV platforms, based on the information summarized from 132 models available worldwide. Next, the evolvement of the key elements, including onboard processing units, navigation sensors, mission-oriented sensors, communication modules, and ground control station, is presented and analyzed. Third, achievements of small-scale UAV research, particularly on platform design and construction, dynamics modeling, and flight control, are introduced. Finally, the future of small-scale UAVs' research, civil applications, and military applications are forecasted.
This paper was recommended for publication in its revised form by the editors-in-chief.
References
- Proc. Adv. Neural Inf. (2007). Google Scholar
- Int. J. Robot. Res. 29(13), 1 (2010), DOI: 10.1177/0278364910371999. Google Scholar
-
A. Abdessameud and A. Tayebi , Motion Coordination for VTOL Unmanned Aerial Vehicles: Attitude Synchronisation and Formation Control ( Springer , 2013 ) . Crossref, Google Scholar - Prog. Aerosp. Sci. 42(2), 129 (2006), DOI: 10.1016/j.paerosci.2006.07.001. Crossref, Google Scholar
-
R. Austin , Unmanned Aircraft Systems: UAVs Design, Development, and Deployment ( Wiley , 2010 ) . Crossref, Google Scholar S. Baek , F. Bermudez and R. Fearing , Intelligent Robots and Systems (San Francisco, CA, 2011) pp. 286–292. Google Scholar-
R. K. Barnhart (eds.) , Introduction to Unmanned Aircraft System ( CRC Press , 2012 ) . Google Scholar -
R. W. Beard and T. W. McLain , Small Unmanned Aircraft: Theory and Practice ( Princeton University Press , 2012 ) . Crossref, Google Scholar - Arch. Math. Logic 41(7), 643 (2002), DOI: 10.1007/s001530100128. Crossref, Google Scholar
-
D. J. Biezad , Integrated Navigation and Guidance Systems ( AIAA , 1999 ) . Crossref, Google Scholar - J. Mechatron. 21(5), 803 (2011), DOI: 10.1016/j.mechatronics.2011.02.002. Crossref, Google Scholar
-
G. Cai , B. M. Chen and T. H. Lee , Unmanned Rotorcraft Systems ( Springer , New York , 2011 ) . Crossref, Google Scholar - J. Am. Helicopter Soc. 57(1), 1 (2012), DOI: 10.4050/JAHS.57.012004. Crossref, Google Scholar
- Int. J. Micro Air Vehicles 5(4), (2013), DOI: 10.1260/1756-8293.5.4.273. Google Scholar
- Int. J. Control Autom. 8(1), 36 (2010), DOI: 10.1007/s12555-010-0105-z. Crossref, Google Scholar
-
A. B. Chatfield , Fundamentals of High Accuracy Inertial Navigation ( AIAA , 1997 ) . Crossref, Google Scholar -
B. M. Chen , Robust and Hinfty Control ( Springer , 2000 ) . Crossref, Google Scholar - IEEE Trans. Autom. Control 48(3), 427 (2003), DOI: 10.1109/TAC.2003.809148. Crossref, Google Scholar
P. Chirarattananon , K. Ma and R. J. Wood , Adaptive control for takeoff, hovering, and landing of a robotic fly, Intelligent Robots and Systems (2013) pp. 3808–3815. Google Scholar-
G. Chowdhary , Flight test results of adaptive controllers in presence of severe structural damage , AIAA Guidance, Navigation, and Control ( 2010 ) . Google Scholar M. La Civita , W. C. Messner and T. Kanade , Modeling of small-scale helicopters with integrated first-principles and system-identification techniques, Forum of the American Helicopter Society (2002) pp. 2505–2516. Google Scholar- Competition link, DARPA UAVForge Competition, Available at www.uavforge.net/ . Google Scholar
- Competition link, International Aerial Robotics Competition, Available at www.aerialroboticscompetition.org/ . Google Scholar
- Competition link, International UAV Innovation Grand Prix, Available at www.uavgp.com.cn/Home/Index . Google Scholar
-
K. Dalamagkidis , K. P. Valavanis and L. A. Piegl (eds.) , On Integrating Unmanned Aircraft Systems into the National Airspace System , 2nd edn. ( Springer , 2012 ) . Crossref, Google Scholar - IEEE Trans. Robot. 22(4), 776 (2006). Crossref, Google Scholar
- J. Aircraft 50(4), 1117 (2013), DOI: 10.2514/1.C032065. Crossref, Google Scholar
P. J. Duhamel , Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor, Robotics and Automation (2012) pp. 4228–4235. Google ScholarB. Finio , N. Perez-Arancibia and R. J. Wood , System identification, modeling, and optimization of an insect-sized flapping-wing micro air vehicle, Intelligent Robots and Systems (2011) pp. 1389–1396. Google Scholar- Comput. Law Sec. Rev. 28(2), 184 (2012), DOI: 10.1016/j.clsr.2012.01.005. Crossref, Google Scholar
- J. Automatica 25(3), 335 (1989). Crossref, Google Scholar
- J. Intell. Robot. Syst. 54(1), 423 (2009), DOI: 10.1007/s10846-008-9273-y. Crossref, Google Scholar
- J. Mech. Robot. 4(2), 1 (2012), DOI: 10.1115/1.4005525. Google Scholar
- J. A. Grauer, Modeling and system identification of an ornithopter flight dynamics model, Doctoral dissertation, The University of Maryland (2012) . Google Scholar
-
J. Grauer and J. Hubbard , A multibody model of an ornithopter , Proc. AIAA Aerospace Sciences Meeting ( 2009 ) . Google Scholar -
M. Groen , Improving flight performance of the flapping wing MAV DelFly II , Proc. International Micro Air Vehicle ( 2010 ) . Google Scholar - Int. J. Adv. Res. Comput. Eng. Technol. 2(4), 1646 (2013). Google Scholar
-
R. Harmon , Experimental determination of ornithopter membrane wing shapes used for simple aerodynamic modeling , AIAA Atmospheric Flight Mechanics ( 2008 ) . Google Scholar - Aust. J. Basic Appl. Sci. 3(2), 943 (2009). Google Scholar
W. Hoburg and R. Tedrake , System identification of post stall aerodynamics for UAV perching, AIAA Infotech @ Aerospace (2009) pp. 1–9. Google Scholar- J. Intell. Robot. Syst. 74(1), 129 (2014), DOI: 10.1007/s10846-013-9931-6. Crossref, Google Scholar
-
G. M. Hoffmann , Quadrotor helicopter flight dynamics and control: Theory and experiment , AIAA Guidance, Navigation, and Control ( 2007 ) . Google Scholar - J. How, B. Bethke, A. Frank, D. Dale and J. Vian, Realtime indoor autonomous vehicle test environment, IEEE Control. Syst. Mag. 28(2) (2008) 51–64 . Google Scholar
C. Hu , System identification of a small UAVs speeding up process before take-off, 2004 Asian Control (2004) pp. 392–395. Google Scholar-
J. S. Jang and C. Tomlin , Design and implementation of a low cost, hierarchical and modular avionics architecture for the DragonFly UAVs , AIAA Guidance, Navigation, and Control ( 2002 ) . Google Scholar -
F. Jin , T. Hiroshi and S. Shigeru , Development of small unmanned aerial vehicle and flight controller design , AIAA Atmospheric Flight Mechanics ( 2007 ) . Google Scholar - J. Guid. Control Dynam. 28(3), 524 (2005), DOI: 10.2514/1.6271. Crossref, Google Scholar
-
E. N. Johnson , Flight test results of autonomous fixed-wing UAV transitions to and from stationary hover , AIAA Guidance, Navigation, and Control ( 2006 ) . Google Scholar - J. Field Robot. 29(2), 315 (2012), DOI: 10.1002/rob.20414. Crossref, Google Scholar
- J. Field Robot. 27(3), 311 (2010). Crossref, Google Scholar
-
H. S. Khalil , Nonlinear Systems , 2nd edn. ( Prentice Hall , 2002 ) . Google Scholar H. Kim , D. Shim and S. Sastry , Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles, American Control (2002) pp. 3576–3581. Google ScholarA. Klaptocz , Euler spring collision protection for flying robots, Proc. Intelligent Robots and Systems (2013) pp. 1886–1892. Google Scholar-
V. Klein and E. A. Morelli , Aircraft System Identification: Theory and Practice ( AIAA , 2006 ) . Crossref, Google Scholar - Aeronautical J. 115(1163), 29 (2011). Crossref, Google Scholar
- Int. J. Control 73(1), 1001 (1999). Crossref, Google Scholar
-
F. L. Lewis , D. Vrabie and V. L. Syrmos , Optimal Control , 3rd edn. ( Wiley , 2012 ) . Crossref, Google Scholar - J. Comput. Model. 4(1), 167 (2014). Google Scholar
-
B. Mettler , Identification Modeling and Characteristics of Miniature Rotorcraft ( Kluwer Academics Publisher , 2003 ) . Crossref, Google Scholar B. Mettler , Benchmarking of obstacle field navigation algorithms for autonomous helicopters, Annual Forum of the American Helicopter Society (2010) pp. 1–18. Google Scholar- B. Mettler, T. Kanade and M. Tischler, System identification modeling of a model-scale helicopter, Carnegie Mellon University, The Robotics Institute Archive (2000), pp. 1–25 . Google Scholar
-
D. Mueller , J. Gerdes and S. K. Gupta , Incorporation of passive wing folding in flapping wing miniature air vehicles , ASME Mechanism and Robotics ( 2009 ) . Google Scholar - News weblink, Amazon testing drones for deliveries, Available at http://www.bbc.co.uk/news/technology-25180906 . Google Scholar
-
K. Nonami , Autonomous Flying Robots ( Springer , 2010 ) . Crossref, Google Scholar - Annu. Rev. Control 28(2), 167 (2004), DOI: 10.1016/j.arcontrol.2004.05.003. Crossref, Google Scholar
- Overview of inertial sensors, Available at www.vectornav.com/support/library . Google Scholar
-
B. W. Parkinson , Global Positioning System: Theory and Applications II ( AIAA , 1996 ) . Crossref, Google Scholar - Int. J. MAV 3(4), 217 (2011). Google Scholar
-
N. Perez-Arancibia , Advanced Robotics ( Montevideo, Uruguay , 2013 ) . Google Scholar J. M. Pflimlin , P. Soures and T. Hamel , A hierarchical control strategy for the autonomous navigation of a ducted fan flying robot, Robotics and Automation (2006) pp. 2491–2496. Google Scholar-
A. A. Proctor , Development of an autonomous aerial reconnaissance system at Georgia Tech , Association for Unmanned Vehicle Systems International Unmanned Systems ( 2003 ) . Google Scholar - Product link, IMU/INS/INU manufacturer list, Available at damien.douxchamps.net/research/imu/ . Google Scholar
- Product weblink, List of UAV Manufacturers, Available at www.uavglobal.com/ . Google Scholar
- Project weblink, Autonomous Control Project, University of New South Wales, Available at seit.unsw.adfa.edu.au/staff/sites/hrp/research/UAV/index.html . Google Scholar
- Project weblink, Autonomous Flying Vehicle Project, University of Southern California, Available at www-robotics.usc.edu/ãvatar/ . Google Scholar
- Project weblink, Autonomous Helicopter Project, Carnegie Mellon University, Available at www.cs.cmu.edu/afs/cs/project/chopper/www/ . Google Scholar
- Project weblink, Dragonfly Robot, Techject Inc., Available at innovations.techject.com/ . Google Scholar
- Project weblink, Flapping Wing MAV project, University of Maryland, Available at terpconnect.umd.edu/~skgupta/UMdBird/ . Google Scholar
- Project link, MAVLink Communication Protocol, Available at qgroundcontrol.org/mavlink/start . Google Scholar
- Project link, Mission Planner Ground Control Station Software, Available at planner.ardupilot.com/ . Google Scholar
- Project weblink, Nano Hummingbird, AeroVironment, Available at www.avinc.com/nano . Google Scholar
- Project weblink, Ornithopter Flapping-Wing UAV Project, University of Maryland, Available at www.morpheus.umd.edu/research/flapping-wing-flight/index.html . Google Scholar
- Project weblink, Ornithopter MAV Project, University of California, Berkeley, Available at robotics.eecs.berkeley.edu/~ronf/Biomimetics.html . Google Scholar
- Project link, QGroundControl Ground Control Station Software, Available at qgroundcontrol.org/ . Google Scholar
- Project weblink, Small Unmanned Aircraft Project, Brigham Young University, Available at uavbook.byu.edu/doku.php . Google Scholar
- Project weblink, SmartBird flapping-wing prototype, Festo Inc., Available at www.festo.com/cms/en_corp/11369.htm . Google Scholar
- Project weblink, S1000 72-hour flight test, Available at www.dji.com/product/spreading-wings-s1000/video . Google Scholar
-
I. A. Raptis and K. P. Valavanis , Linear and Nonlinear Control of Small-Scale Unmanned Helicopters ( Springer , 2011 ) . Crossref, Google Scholar - J. Intell. Robot. Syst. 65(1), 437 (2012), DOI: 10.1007/s10846-011-9615-z. Crossref, Google Scholar
- Research group weblink, Aerospace Controls Laboratory, Massachusetts Institute of Technology, Available at www.mit.edu/people/jhow/ . Google Scholar
- Research group weblink, Aerospace Systems and Control Lab, Korea Advanced Institute of Science & Technology, Available at ascl.kaist.ac.kr/systems_09 . Google Scholar
- Research group weblink, Australian Centre for Field Robotics, University of Sydney, Available at www.acfr.usyd.edu.au/research/ . Google Scholar
- Research group weblink, Autonomous System Technologies Research Integration Lab, Arizona State University, Available at robotics.asu.edu/ . Google Scholar
- Research group weblink, Autonomous Vehicle Laboratory, University of Maryland, Available at www.avl.umd.edu/index.html . Google Scholar
- Research group weblink, Berkeley Aerobot Team, University of California, Berkeley, Available at robotics.eecs.berkeley.edu/bear/index.html . Google Scholar
- Research group weblink, Biomechanical Engineering Laboratory, Chiba University, Available at www.em.eng.chiba-u.jp/~lab8/research.html . Google Scholar
- Research group weblink, Bio-Robotics Lab, Purdue University, Available at engineering.purdue.edu/xdeng/index.html . Google Scholar
- Research group weblink, Centro Automatica y Robotica (C.A.R.), Technical University of Madrid, Available at www.vision4uav.com/ . Google Scholar
- Research group weblink, Flight Mechanics and Controls Group, Georgia Institute of Technology, Available at controls.ae.gatech.edu/wiki/Main_Page . Google Scholar
- Research group weblink, Flying Machine Arena Project, ETH Zurich, Available at www.idsc.ethz.ch/Research_DAndrea/Flying_Machine_ Arena . Google Scholar
- Research group weblink, GRASP Laboratory, University of Pennsylvania, Available at www.kumarrobotics.org/ . Google Scholar
- Research group weblink, Harvard Microrobotics Lab, Harvard University, Available at micro.seas.harvard.edu/ . Google Scholar
- Research group weblink, Hybrid Systems Lab, Stanford University, Available at hybrid.eecs.berkeley.edu/starmac/ . Google Scholar
- Research group weblink, Khalifa University Robotics Institute, Khalifa Unversity, Available at www.kustar.ac.ae/pages/khalifa-university-robotics-institute-kuri/5206 . Google Scholar
- Research group weblink, Laboratory of Intelligent Systems, Available at EPFL, lis.epfl.ch/ . Google Scholar
- Research group weblink, Measurement and Control Laboratory, ETH Zurich, Available at www.uav.ethz.ch/ . Google Scholar
- Research group weblink, Micro Air Vehicle Laboratory, Delft University of Technology, Available at www.lr.tudelft.nl/en/cooperation/facilities/mav-laboratory . Google Scholar
- Research group weblink, Micro Air Vehicles Laboratory, University of Arizona, Available at devame.engr.arizona.edu/sergey-v-shkarayev#res . Google Scholar
- Research group weblink, Multidisciplinary Unmanned Aerial Systems Research Group, University of Florida, Available at uav.ifas.ufl.edu/index.shtml . Google Scholar
- Research group weblink, NUS UAV Team, National University of Singapore, Available at uav.ece.nus.edu.sg/index.html . Google Scholar
- Research group weblink, Pixhawk Project, Computer Vision and Geometry Lab, ETH Zurich, Available at pixhawk.ethz.ch/overview . Google Scholar
- Research group weblink, Robotics Design Lab, Queensland University, Available at robotics.itee.uq.edu.au/wiki/pmwiki.php?n=Site.Research . Google Scholar
- Research group weblink, Robotics & Systems Control Laboratory, Chiba University, Available at mec2.tm.chiba-u.jp/nonami/index.html . Google Scholar
- Research group weblink, Robotics, Vision and Control Group, University of Seville, Available at grvc.us.es/en/ . Google Scholar
- Research group weblink, ServoHeli Lab, ShenYang Institute of Automation, Available at uav.sia.cn/team.php?id=4 . Google Scholar
- Research group weblink, UASTech Lab, Linkoping University, Available at www.ida.liu.se/~patdo/auttek/introdu-ction/index.html . Google Scholar
- Research group weblink, UAV Research Group, University of Minnesota, Available at www.uav.aem.umn.edu/ . Google Scholar
- Research group weblink, Unmanned System Research Group, Korea Advanced Institute of Science & Technology, Available at unmanned.kaist.ac.kr/ . Google Scholar
- Research group weblink, Wright State Center of Excellence, Wright State University, Available at cecs.wright.edu/mav/research/ . Google Scholar
- Roadmap, Integration of civil unmanned aircraft systems (UAS) in the national airspace system, US Department of Transportation (2013) . Google Scholar
- Roadmap, Unmanned systems integrated roadmap 20132038, US Office of the Secretary of Defense (2013) . Google Scholar
- J. Aircraft 46, 2016 (2009), DOI: 10.2514/1.43187. Crossref, Google Scholar
M. Ryan and H. Su , Classification of flapping wing mechanisms for micro air vehicles, ASME Int. Design Engineering and Computers and Information in Engineering (2012) pp. 105–115. Google Scholar-
S. Sastry and M. Bodson , Adaptive Control: Stability, Convergence, and Robustness ( Prentice-Hall , 1994 ) . Google Scholar D. H. Shim , H. J. Kim and S. Sastry , Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification, IEEE Control Applications (2000) pp. 808–813. Google Scholar-
T. Shima (ed.) , UAV Cooperative Decision and Control ( Society for Industrial Mathematics , 2008 ) . Google Scholar -
S. V. Shkarayev , Introduction to the Design of Fixed-Wing Micro Air Vehicles Including Three Case Studies ( AIAA , 2007 ) . Crossref, Google Scholar -
W. Shyy , An Introduction to Flapping Wing Aerodynamics ( Cambridge University Press , 2013 ) . Crossref, Google Scholar - Software weblink, QNX Operating System, Available at www.qnx.com/ . Google Scholar
- Software weblink, RTLinux Operating System, Available at en.wikipedia.org/wiki/RTLinux . Google Scholar
- Software weblink, VxWorks Operating System, Available at www.windriver.com/products/vxworks/ . Google Scholar
- IEEE Control Syst. 34(1), 42 (2014), DOI: 10.1109/MCS.2013.2287568. Crossref, Google Scholar
-
R. S. Sutton and A. G. Barto , Reinforcement Learning: An Introduction ( MIT Press , 1998 ) . Google Scholar M. Takahashi , G. Schulein and M. Whalley , Flight control law design and development for an autonomous rotorcraft, Annual Forum of the American Helicopter Society (2008) pp. 1652–1671. Google Scholar-
M. B. Tischler , CONDUIT — A new multidisciplinary integration environment for flight control development , AIAA Guidance, Navigation, and Control ( 1997 ) . Google Scholar -
M. B. Tischler and R. K. Remple , Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples ( AIAA , 2006 ) . Google Scholar - E. Ulrich, Flight Dynamics and Control of Micro-Scaled Robotic Samara (Winged-Seed) Rotorcraft, Doctoral dissertation, University of Maryland (2013) . Google Scholar
-
K. P. Valavanis (ed.) , Advances in Unmanned Aerial Vehicles ( Springer , 2007 ) . Crossref, Google Scholar -
K. P. Valavanis (eds.) , Unmanned Aircraft Systems ( Springer , 2010 ) . Google Scholar -
K. P. Valavanis , P. Oh and L. A. Piegl (eds.) , Unmanned Aircraft Systems ( Springer , 2009 ) . Crossref, Google Scholar -
K. P. Valavanis and G. J. Vachtsevanos (eds.) , Handbook of Unmanned Aerial Vehicles (UAVs) ( Springer , 2013 ) . Google Scholar C. Wagter , Autonomous wind tunnel free-flight of a flapping wing MAV, Advances in Aerospace Guidance, Navigation and Control (2013) pp. 603–621. Google ScholarR. J. Wood , Microrobotics using composite materials: The micromechanical flying insect thorax, Robotics and Automation (2003) pp. 1842–1849. Google Scholar-
R. Yanushevsky , Guidance of Unmanned Aerial Vehicles ( CRC Press , 2011 ) . Crossref, Google Scholar