World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Validating Knowledge Contents with Blockchain-Assisted Gamified Crowdsourcing

    https://doi.org/10.1142/S2196888821500202Cited by:2 (Source: Crossref)

    This paper presents the use of gamified crowdsourcing for knowledge content validation. Constructing a high-quality knowledge base is crucial for building an intelligent system. We develop a refinement process for the knowledge base of our word retrieval assistant system, where each piece of knowledge is represented as a triple. To validate triples acquired from various sources, we introduce yes/no quizzes and present them to many casual users for their inputs. Only the triples voted “yes” by a sufficient number of users are incorporated into the main knowledge base. Users are incentivized by rewards based on their contribution to the validation process. To ensure transparency of the reward-giving process, blockchain is utilized to store logs of the users’ inputs from which the rewards are calculated. Different strategies are also proposed for selecting the next quiz. The simulation results indicate that the proposed approach has the potential to validate knowledge contents. This paper is a revised version of our conference paper presented at the 12th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2020).

    References

    • 1. H. Paulheim , Knowledge graph refinement: A survey of approaches and evaluation methods, Semant. Web 8(3) (2017) 489–508. CrossrefGoogle Scholar
    • 2. J. Howe , Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business (Crown Business, 2009). Google Scholar
    • 3. B. Morschheuser, J. Hamari, J. Koivisto and A. Maedche , Gamified crowdsourcing: Conceptualization, literature review, and future agenda, Int. J. Hum.-Comput. Stud. 106(Suppl. C) (2017) 26–43. CrossrefGoogle Scholar
    • 4. L. von Ahn and L. Dabbish , Designing games with a purpose, Commun. ACM 51 (2008) 58–67. CrossrefGoogle Scholar
    • 5. G. Re Calegari, A. Fiano and I. Celino , A framework to build games with a purpose for linked data refinement, in The Semantic Web — ISWC 2018, eds. D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee and E. Simperl (Springer International Publishing, Cham, 2018), pp. 154–169. CrossrefGoogle Scholar
    • 6. L. von Ahn and L. Dabbish , Labeling images with a computer game, in Proc. SIGCHI Conf. Human Factors in Computing Systems, CHI’04 (ACM, New York, NY, 2004), pp. 319–326. CrossrefGoogle Scholar
    • 7. A. M. Antonopoulos , Mastering Bitcoin: Programming the Open Blockchain (O’Reilly Media, 2017). Google Scholar
    • 8. K. Kuwabara, T. Iwamae, Y. Wada, H.-H. Huang and K. Takenaka , Toward a conversation partner agent for people with aphasia: Assisting word retrieval, in Intelligent Decision Technologies 2016: Proc. 8th KES Int. Conf. Intelligent Decision Technologies (KES-IDT 2016) — Part I, eds. I. Czarnowski, M. A. Caballero, J. R. Howlett and C. L. Jain (Springer International Publishing, Cham, 2016), pp. 203–213. CrossrefGoogle Scholar
    • 9. D. Kurita, B. Roengsamut, K. Kuwabara and H.-H. Huang , Simulating gamified crowdsourcing of knowledge base refinement: Effects of game rule design, J. Inf. Telecommun. 2(4) (2018) 374–391. Google Scholar
    • 10. H. Bu and K. Kuwabara , Toward blockchain-assisted gamified crowdsourcing for knowledge refinement, in Intelligent Information and Database Systems, eds. N. T. Nguyen, K. Jearanaitanakij, A. Selamat, B. Trawiński and S. Chittayasothorn (Springer International Publishing, Cham, 2020), pp. 3–14. CrossrefGoogle Scholar
    • 11. Y. Lu , The blockchain: State-of-the-art and research challenges, J. Ind. Inf. Integr. 15 (2019) 80–90. CrossrefGoogle Scholar
    • 12. M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xiang and R. H. Deng , CrowdBC: A blockchain-based decentralized framework for crowdsourcing, IEEE Trans. Parallel Distrib. Syst. 30(6) (2019) 1251–1266. CrossrefGoogle Scholar
    • 13. S. Zhu, Z. Cai, H. Hu, Y. Li and W. Li , zkCrowd: A hybrid blockchain-based crowdsourcing platform, IEEE Trans. Ind. Inf. 16(6) (2020) 4196–4205. CrossrefGoogle Scholar
    • 14. T. Min, H. Wang, Y. Guo and W. Cai , Blockchain games: A survey, in 2019 IEEE Conf. Games (CoG) (IEEE, 2019), pp. 1–8. CrossrefGoogle Scholar
    • 15. J. Hu, K. Yang, K. Wang and K. Zhang , A blockchain-based reward mechanism for mobile crowdsensing, IEEE Trans. Comput. Soc. Syst. 7(1) (2020) 178–191. CrossrefGoogle Scholar
    • 16. X. Lin, J. Li, J. Wu, H. Liang and W. Yang , Making knowledge tradable in edge-AI enabled IoT: A consortium blockchain-based efficient and incentive approach, IEEE Trans. Ind. Inf. 15 (2019) 6367–6378. CrossrefGoogle Scholar
    • 17. J. D. Harris and B. Waggoner , Decentralized and collaborative AI on blockchain, in 2019 IEEE Int. Conf. Blockchain (IEEE, 2019), pp. 368–375. CrossrefGoogle Scholar
    • 18. H.-G. Fill and F. Häerer , Knowledge blockchains: Applying blockchain technologies to enterprise modeling, in Proc. 51st Hawaii Int. Conf. System Sciences (2018), pp. 4045–4054. http://hdl.handle.net/10125/50398. CrossrefGoogle Scholar
    • 19. G. Nyame, Z. Qin, K. O.-B. Obour Agyekum and E. B. Sifah , An ECDSA approach to access control in knowledge management systems using blockchain, Information 11(2) (2020), https://doi.org/10.3390/info11020111. CrossrefGoogle Scholar
    • 20. O. Scekic, S. Nastic and S. Dustdar , Blockchain-supported smart city platform for social value co-creation and exchange, IEEE Internet Comput. 23 (2019) 19–28. CrossrefGoogle Scholar
    • 21. M. Sopek, P. Gradzki, W. Kosowski, D. Kuziski, R. Trójczak and R. Trypuz , GraphChain: A distributed database with explicit semantics and chained RDF graphs, in Companion Proc. Web Conf. 2018, WWW’18 ( International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 2018), pp. 1171–1178. CrossrefGoogle Scholar
    • 22. S. Wang, C. Huang, J. Li, Y. Yuan and F. Wang , Decentralized construction of knowledge graphs for deep recommender systems based on blockchain-powered smart contracts, IEEE Access 7 (2019) 136951–136961. CrossrefGoogle Scholar
    • 23. M. Emaldi, K. Zabaleta and D. López-de Ipiña , AUDABLOK: Engaging citizens in open data refinement through blockchain, Proceedings 31(1) (2019), https://doi.org/10.3390/proceedings2019031052. CrossrefGoogle Scholar
    • 24. T. Iwamae, K. Kuwabara and H.-H. Huang , Toward gamified knowledge contents refinement — case study of a conversation partner agent, in Proc. 9th Int. Conf. Agents and Artificial Intelligence (ICAART 2017), Vol. 1 (SCITEPRESS (Science and Technology Publications, Lda), 2017), pp. 302–307. CrossrefGoogle Scholar
    • 25. S. Nakamoto , Bitcoin: A Peer-to-Peer Electronic Cash System (2008), https://nakamotoinstitute.org/literature/bitcoin/. Google Scholar
    • 26. S. M. H. Bamakan, A. Motavali and A. Babaei Bondarti , A survey of blockchain consensus algorithms performance evaluation criteria, Expert Syst. Appl. 154 (2020) 113385. CrossrefGoogle Scholar