World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

LOW ENTROPY OUTPUT STATES FOR PRODUCTS OF RANDOM UNITARY CHANNELS

    In this paper, we study the behavior of the output of pure entangled states after being transformed by a product of conjugate random unitary channels. This study is motivated by the counterexamples by Hastings [Superadditivity of communication capacity using entangled inputs, Nat. Phys.5 (2009) 255–257] and Hayden–Winter [Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1, Comm. Math. Phys.284(1) (2008) 263–280] to the additivity problems. In particular, we study in depth the difference of behavior between random unitary channels and generic random channels. In the case where the number of unitary operators is fixed, we compute the limiting eigenvalues of the output states. In the case where the number of unitary operators grows linearly with the dimension of the input space, we show that the eigenvalue distribution converges to a limiting shape that we characterize with free probability tools. In order to perform the required computations, we need a systematic way of dealing with moment problems for random matrices whose blocks are i.i.d. Haar distributed unitary operators. This is achieved by extending the graphical Weingarten calculus introduced in [B. Collins and I. Nechita, Random quantum channels I: Graphical calculus and the Bell state phenomenon, Comm. Math. Phys.297(2) (2010) 345–370].

    AMSC: 15A52, 94A17, 94A40

    References

    • G.   Aubrun , Comm. Math. Phys.   288 , 1103 ( 2009 ) . CrossrefGoogle Scholar
    • S. Belinschi, B. Collins and I. Nechita, Invent. Math. 190(3), 647 (2012). CrossrefGoogle Scholar
    • R.   Bhatia , Matrix Analysis , Graduate Texts in Mathematics   169 ( Springer-Verlag , New York , 1997 ) . CrossrefGoogle Scholar
    • F. Brandao and M. S. L. Horodecki, Open Syst. Inf. Dyn. 17(1), 31 (2010). LinkGoogle Scholar
    • B. Collins, Int. Math. Res. Not. 2003(17), 953 (2003). CrossrefGoogle Scholar
    • B.   Collins , M.   Fukuda and I.   Nechita , J. Math. Phys.   53 , 032203 ( 2012 ) . CrossrefGoogle Scholar
    • B. Collins, M. Fukuda and I. Nechita, On the geometry of the image of large random quantum channels, in preparation . Google Scholar
    • B. Collins and I. Nechita, Comm. Math. Phys. 297(2), 345 (2010). CrossrefGoogle Scholar
    • B. Collins and I. Nechita, Entropy 12(6), 1612 (2010). CrossrefGoogle Scholar
    • B.   Collins and I.   Nechita , Adv. Math.   226 , 1181 ( 2011 ) . CrossrefGoogle Scholar
    • B. Collins and I. Nechita, Ann. Appl. Probab. 21(3), 1136 (2011). CrossrefGoogle Scholar
    • B.   Collins , I.   Nechita and K.   Życzkowski , J. Phys. A: Math. Theor.   43 , 275303 ( 2010 ) . CrossrefGoogle Scholar
    • B. Collins and P. Śniady, Comm. Math. Phys. 264(3), 773 (2004). CrossrefGoogle Scholar
    • M.   Fukuda and C.   King , J. Math. Phys.   51 , 042201 ( 2010 ) . CrossrefGoogle Scholar
    • M. Fukuda, C. King and D. Moser, Comm. Math. Phys. 296(1), 111 (2010). CrossrefGoogle Scholar
    • M. B.   Hastings , Nature Phys.   5 , 255 ( 2009 ) . CrossrefGoogle Scholar
    • P.   Hayden et al. , Comm. Math. Phys.   250 , 371 ( 2004 ) . CrossrefGoogle Scholar
    • P. Hayden and A. Winter, Comm. Math. Phys. 284(1), 263 (2008). CrossrefGoogle Scholar
    • F.   Hiai and D.   Petz , The Semicircle Law, Free Random Variables and Entropy ( AMS Press , 2006 ) . CrossrefGoogle Scholar
    • A. S.   Holevo , Probab. Theory Appl.   51 , 133 ( 2005 ) . Google Scholar
    • C. Kinget al., Markov Process. Related Fields 13(2), 391 (2007). Google Scholar
    • A.   Nica and R.   Speicher , Lectures on the Combinatorics of Free Probability , London Mathematical Society Lecture Note Series   335 ( Cambridge University Press , Cambridge , 2006 ) . CrossrefGoogle Scholar
    • R.   Speicher , Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory , Memoirs of the American Mathematical Society   132 ( American Mathematical Society , Providence, RI , 1998 ) . Google Scholar