World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

TENSOR PRODUCTS OF RANDOM UNITARY MATRICES

    https://doi.org/10.1142/S2010326312500098Cited by:12 (Source: Crossref)

    Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M = 2, N become large or M become large and N = 2.

    AMSC: 60B20, 15B52

    References

    • G.   Anderson , A.   Guionnet and O.   Zeitouni , An Introduction to Random Matrices , Cambridge Studies in Advanced Mathematics   118 ( Cambridge University Press , Cambridge , 2010 ) . Google Scholar
    • R. N.   Bhattacharya and R.   Ranga Rao , Normal Approximation and Asymptotic Expansions , Classics in Applied Mathematics   64 ( SIAM , Philadelphia , 2010 ) . CrossrefGoogle Scholar
    • F. J. Dyson, J. Math. Phys. 3, 140 (1962), DOI: 10.1063/1.1703773. CrossrefGoogle Scholar
    • P. J. Forrester and E. M. Rains, Random Matrix Models and their Applications, Mathematical Sciences Research Institute Publications 40 (Cambridge University Press, Cambridge, 2001) pp. 171–207. Google Scholar
    • R. L.   Graham , D. E.   Knuth and O.   Patashnik , Concrete Mathematics ( Addison-Wesley , 1998 ) . Google Scholar
    • P. Hayden, D. W. Leung and A. Winter, Commun. Math. Phys. 265, 95 (2006), DOI: 10.1007/s00220-006-1535-6. CrossrefGoogle Scholar
    • Z.   Lin and Z.   Bai , Probability Inequalities ( Springer , Heidelberg , 2010 ) . Google Scholar
    • M. L.   Mehta , Random Matrices , 3rd edn. ( Elsevier/Academic Press , Amsterdam , 2004 ) . Google Scholar
    • N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960), DOI: 10.1103/PhysRev.120.1698. CrossrefGoogle Scholar
    • K. Życzkowski and H.-J. Sommers, J. Phys. A 34, 7111 (2001). CrossrefGoogle Scholar