World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Structural Stability, Electronic and Magnetic Properties of (Ni1xCox)2MnSn Quaternary Heusler Alloys

    https://doi.org/10.1142/S2010324717500102Cited by:7 (Source: Crossref)

    In this study, we present the calculated structural, electronic and magnetic properties of mixed Heusler alloys (Ni1xCox)2MnSn. Using ab initio calculations with the full-potential augmented plane-wave method (FP-LAPW), we evaluated the various possible configurations of Ni and Co sites in the (Ni1xCox)2MnSn crystallographic lattice. The lowest energy configuration is determined based on energetic considerations. The calculated equilibrium lattice parameters and magnetic moments are in a reasonable agreement with available experimental data. Of interest, we found that the change of total magnetic moment can be interpreted as a linear variation of the magnetic moment of manganese and cobalt atoms.

    References

    • 1. G. E. Bacon and J. S. Plant , J. Phys. F: Met. Phys. 1, 524 (1971). CrossrefGoogle Scholar
    • 2. J. Dubowik, I. Gościańska, A. Szlaferek and Y. V. Kudryavtsev , Mat. Sci. Poland 25, 583 (2007). Google Scholar
    • 3. I. Galanakis, Ph. Mavropoulos and P. H. Dederichs , J. Phys. D Appl. Phys. 39, 765 (2006). CrossrefGoogle Scholar
    • 4. M. Pugaczowa-Michalska , J. Magn. Magn. Mater. 185, 35 (1998). CrossrefGoogle Scholar
    • 5. E. Uhl , J. Solid State Chem. 43, 354 (1982). CrossrefGoogle Scholar
    • 6. A. T. Zayak and P. Entel , J. Magn. Magn. Mater. 290–291, 874 (2005). CrossrefGoogle Scholar
    • 7. S. Ağduk and G. Gökoğlu , J. Alloys Compd. 511, 9 (2012). CrossrefGoogle Scholar
    • 8. J. Li, Z. Zhang, Y. Sun, J. Zhang, G. Zhou, H. Luo and G. Liu , Physica B, Condens. Matter 409, 35 (2013). CrossrefGoogle Scholar
    • 9. P. J. Webster , J. Phys. Chem. Solids 32, 1221 (1971). CrossrefGoogle Scholar
    • 10. E. Valerio, C. Grigorescu, S. A. Manea, F. Guinneton, W. R. Branford and M. Autric , Appl. Surf. Sci. 247, 151 (2005). CrossrefGoogle Scholar
    • 11. S. Picozzi and A. Continenza , Phys. Rev. B 66, 094421 (2002). CrossrefGoogle Scholar
    • 12. Y. Kurtulus, R. Dronskowski, G. D. Samolyuk and V. P. Antropov , Phys. Rev. B 71, 014425 (2005). CrossrefGoogle Scholar
    • 13. R. Mebsout, S. Amari, S. Méçabih, B. Abbar and B. Bouhafs , Int. J. Thermophys. 34, 507 (2013). CrossrefGoogle Scholar
    • 14. T. Roy, M. E. Gruner, P. Entel and A. Chakrabarti , J. Alloys Compd. 632, 822 (2015). CrossrefGoogle Scholar
    • 15. T. Roy, D. Pandey and A. Chakrabarti , Phys. Rev. B 93, 184102 (2016). CrossrefGoogle Scholar
    • 16. M. Pugaczowa-Michalska , Comput. Mater. Sci. 50, 15 (2010). CrossrefGoogle Scholar
    • 17. Y. Kubo and S. Ishida , J. Magn. Magn. Mater. 31–34, 47 (1983). CrossrefGoogle Scholar
    • 18. C. V. Stager and C. C. M. Campbell , Can. J. Phys. 56, 674 (1978). CrossrefGoogle Scholar
    • 19. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz , An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, (Vienna University of Technology, Austria, 2012). Google Scholar
    • 20. J. P. Perdew, S. Burke and M. Ernzehof , Phys. Rev. Lett. 77, 3865 (1996). CrossrefGoogle Scholar
    • 21. M. Asato, M. Ohkubo, T. Hoshino, F. Nakamura, N. Fujima and H. Tatsuoka , Mater. Trans. 49, 1760 (2008). CrossrefGoogle Scholar
    • 22. F. Heusler, W. Stark and E. Haupt , Verh. Der Phys. Ges. 5, 219 (1903). Google Scholar