World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Half-Metallic Ferromagnetism in Double Perovskite Ca2CoMoO6 Compound: DFT+U Calculations by:23 (Source: Crossref)

    A systematic investigation on magnetism and spin-resolved electronic properties in double perovskite Ca2CoMoO6 compound was performed by using the full-potential augmented plane wave plus local orbitals (APW+lo) method within the generalized gradient approximation (GGA-PBE) and GGA-PBE+U scheme. The stability of monoclinic phase (P21n #14) relative to the tetragonal (I4m#87) and cubic (Fm3̄m #225) phase is evaluated. We investigate the effect of Hubbard parameter Uon the ground-state structural and electronic properties of Ca2CoMoO6 compound. We found that the ferromagnetic ground state is the most stable magnetic configuration. The calculated spin-polarized band structures and densities of states indicate that the Ca2CoMoO6 compound is half-metallic (HM) and half-semiconductor (HSC) ferromagnetic (FM) semiconductor with a total magnetic moment of 6.0 using GGA-PBE and GGA-PBE+U, respectively. The Hubbard U parameter provides better description of the electronic structure. Using the Vampire code, an estimation of exchange couplings and magnetic Curie temperature is calculated. Further, our results regarding the magnetic properties of this compound reveal their ferromagnetic nature. The GGA-PBE+U approach provides better band gap results as compared to GGA-PBE approximation. These results imply that Ca2CoMoO6 could be a promising magnetic semiconductor for application in spintronic devices.


    • 1. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura , Nature 395, 677 (1998). CrossrefGoogle Scholar
    • 2. Y. Shimakawa, M. Azuma and N. Ichikawa , Materials 4, 153 (2011). CrossrefGoogle Scholar
    • 3. C. Ritter, M. Ibarra, L. Morellon, J. Blasco, J. Garcia and J. De Teresa , J. Phys.: Condens. Matter 12, 8295 (2000). CrossrefGoogle Scholar
    • 4. M. Viola, M. Martinez-Lope, J. Alonso, J. Martinez, J. De Paoli, S. Pagola, J. Pedregosa, M. Fernandez-Diaz and R. Carbonio , Chem. Mater. 15, 1655 (2003). CrossrefGoogle Scholar
    • 5. R. P. Borges, R. M. Thomas, C. Cullinan, J. M. D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart and A. Revcolevschi , J. Phys., Condens. Matter 11, L445 (1999). CrossrefGoogle Scholar
    • 6. A. Poddar, S. Das and B. Chattopadhyay , J. Appl. Phys. 95, 6261 (2004). CrossrefGoogle Scholar
    • 7. K. O. Obodo and N. Chetty , J. Phys., Condens. Matter 25, 145603 (2013). CrossrefGoogle Scholar
    • 8. K. O. Obodo and N. Chetty , J. Nucl. Mater. 442, 235 (2013). CrossrefGoogle Scholar
    • 9. P. Hohenberg and W. Kohn , Phys. Rev. 136, B864 (1964). CrossrefGoogle Scholar
    • 10. W. Kohn and L. J. Sham , Phys. Rev. 140, A1133 (1965). CrossrefGoogle Scholar
    • 11. J. P. Perdew, K. Burke and Y. Wang , Phys. Rev. B 54, 16533 (1996). CrossrefGoogle Scholar
    • 12. V. I. Anisimov, J. Zaanen and O. K. Andersen , Phys. Rev. B 44, 943 (1991). CrossrefGoogle Scholar
    • 13. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz , An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Austria, 2012). Google Scholar
    • 14. W. Pickett, S. Erwin and E. Ethridge , Phys. Rev. B 58, 1201 (1998). CrossrefGoogle Scholar
    • 15. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray and A. Kumar , Phys. Rev. Lett. 85, 2549 (2000). CrossrefGoogle Scholar
    • 16. F. D. Murnaghan , Proc. Natl. Acad. Sci. 30, 244 (1944). CrossrefGoogle Scholar
    • 17. R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. Ellis and R. W. Chantrell , J. Phys.: Condens. Matter 26, 103202 (2014). CrossrefGoogle Scholar
    • 18. R. F. L. Evans, U. Atxitia and R. W. Chantrell , Phys. Rev. B 91, 144425 (2015). CrossrefGoogle Scholar
    • 19. A. Liechtenstein, V. Anisimov and J. Zaanen , Phys. Rev. B 52, R5467 (1995). CrossrefGoogle Scholar
    • 20. K. Momma and F. Izumi , J. Appl. Crystallogr. 41, 653 (2008). CrossrefGoogle Scholar