World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Spin Dynamics in Magnetic Materials, Part 1; Guest Editor: Mourad Chérif (Université Paris 13, France)No Access

Perpendicular Magnetic Anisotropy in Fe–N Thin Films: Threshold Field for Irreversible Magnetic Stripe Domain Rotation

    The magnetic properties of an iron nitride thin film obtained by ion implantation have been investigated. N2+ ions were implanted in a pristine iron layer epitaxially grown on ZnSe/GaAs(001). X-ray diffraction measurements revealed the formation of body-centered tetragonal N-martensite whose c-axis is perpendicular to the thin film plane and c-parameter is close to that of α-Fe8N. Magnetic measurements disclosed a weak perpendicular magnetic anisotropy (PMA) whose energy density KPMA was assessed to about 105J/m3. A sharp decline of the in-plane magnetocrystalline anisotropy (MCA) was also observed, in comparison with the body-centered cubic iron. The origin of the PMA is attributed to the MCA of N-martensite and/or stress-induced anisotropy. As a result of the PMA, weak magnetic stripe domains with a period of about 130nm aligned along the last saturating magnetic field direction were observed at remanence by magnetic force microscopy. The application of an increasing in-plane magnetic field transverse to the stripes Htrans highlighted a threshold value (μ0Htrans0.1T) above which these magnetic domains irreversibly rotated. Interestingly, below this threshold, the stripes do not rotate, leading to a zero remanent magnetization along the direction of the applied field. The interest of this system for magnetization dynamics is discussed.


    • 1. K. H. Jack, Proc. R. Soc. Lond. A 208, 200 (1951). CrossrefGoogle Scholar
    • 2. K. Nakajima and S. Okamoto, Appl. Phys. Lett. 56, 92 (1990). CrossrefGoogle Scholar
    • 3. N. Ji, M. S. Osofsky, V. Lauter, L. F. Allard, X. Li, K. L. Jensen, H. Ambaye, E. Lara-Curzio and J.-P. Wang, Phys. Rev. B 84, 245310 (2011). CrossrefGoogle Scholar
    • 4. I. Dirba, P. Komissinskyi, O. Gutfleisch and L. Alff, J. Appl. Phys. 117, 173911 (2015). CrossrefGoogle Scholar
    • 5. H. Takahashi, M. Igarashi, A. Kaneko, H. Miyajima and Y. Sugita, IEEE Trans. Mag. 35, 2982 (1999). Google Scholar
    • 6. M. Takahashi and H. Shoji, J. Magn. Magn. Mater. 208, 145 (2000). CrossrefGoogle Scholar
    • 7. J.-P. Wang, S. He and Y. Jiang, Iron nitride permanent magnet and technique for forming iron nitride permanent magnet U. S. patent application 14/238,835 (2014). Google Scholar
    • 8. S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris and E. E. Fullerton, Nat. Mater. 5, 210 (2006). CrossrefGoogle Scholar
    • 9. H. Meng and J. P. Wang, Appl. Phys. Lett. 88, 172506 (2006). CrossrefGoogle Scholar
    • 10. U. Ebels, L. D. Buda, K. Ounadjela and P. E. Wigen, Small Amplitude Dynamics of Nonhomogeneous Magnetization Distributions: The Excitation Spectrum of Stripe Domains. in Spin Dynamics in Confined Magnetic Structures I, eds. B. HillebrandsK. Ounadjela (Springer-Verlag, Berlin, 2002), pp. 167–217. CrossrefGoogle Scholar
    • 11. N. Vukadinovic, O. Vacus, M. Labrune, O. Archer and D. Pain, Phys. Rev. Lett. 85, 2817 (2000). CrossrefGoogle Scholar
    • 12. N. Vukadinovic, M. Labrune, J. Ben Youssef, A. Marty, J. C. Toussaint and H. Le Gall, Phys. Rev. B 65, 054403 (2001). CrossrefGoogle Scholar
    • 13. M. Marangolo, F. Gustavsson, M. Eddrief, Ph. Sainctavit, V. H. Etgens, V. Cros, F. Petroff, J. M. George, P. Bencok and N. B. Brookes, Phys. Rev. Lett. 88, 217202 (2002). CrossrefGoogle Scholar
    • 14. M. Eddrief, M. Marangolo, S. Corlevi, G.-M. Guichar, V. H. Etgens, R. Mattana, D. H. Mosca and F. Sirotti, Appl. Phys. Lett. 81, 4553 (2002). CrossrefGoogle Scholar
    • 15. J. F. Ziegler, J. P. Biersac and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). Google Scholar
    • 16. D. Bisero, P. Cremon, M. Madami, M. Sepioni, S. Tacchi, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, N. Singh and S. Goolaup, J. Nanopart. Res. 13, 5691 (2011). CrossrefGoogle Scholar
    • 17. M. Sepioni, M. Madami, S. Tacchi, G. Gubbiotti, G. Carlotti, D. Bisero, A. O. Adeyeye, N. Singh and S. Goolaup, J. Phys.: Conf. Ser. 200, 072089 (2010). CrossrefGoogle Scholar
    • 18. N. Saito, H. Fujiwara and Y. Sugita, J. Phys. Soc. Jpn. 19, 1116 (1964). CrossrefGoogle Scholar
    • 19. M. Barturen, B. Rache Salles, P. Schio, J. Milano, A. Butera, S. Bustingorry, C. Ramos, A. J. A. de Oliveira, M. Eddrief, E. Lacaze, F. Gendron, V. H. Etgens and M. Marangolo, Appl. Phys. Lett. 101, 092404 (2012). CrossrefGoogle Scholar
    • 20. S. Fin, R. Tomasello, D. Bisero, M. Marangolo, M. Sacchi, H. Popescu, M. Eddrief, C. Hepburn, G. Finocchio, M. Carpentieri, A. Rettori, M. G. Pini and S. Tacchi, Phys. Rev. B 92, 224411 (2015). CrossrefGoogle Scholar
    • 21. E. Sallica Leva, R. C. Valente, F. Martinez Tabares, M. Vasquez Mansilla, S. Roshdestwensky and A. Butera, Phys. Rev. B 82, 144410 (2010). CrossrefGoogle Scholar
    • 22. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998). Google Scholar
    • 23. W. Szuszkiewicz, K. Franc, B. Hennion, F. Ott and M. Aleszkiewicz, J. Alloys Compd. 423, 172 (2006). CrossrefGoogle Scholar
    • 24. K. Sin and S. X. Wang, IEEE Trans. Mag. 33, 2833 (1997). Google Scholar
    • 25. H. Takahashi, K. Mitsuoka, M. Komuro and Y. Sugita, J. Appl. Phys. 73, 6060 (1993). CrossrefGoogle Scholar
    • 26. G. Gubbiotti, P. Malagò, S. Fin, S. Tacchi, L. Giovannini, D. Bisero, M. Madami, G. Carlotti, J. Ding, A. O. Adeyeye and R. Zivieri, Phys. Rev. B 90, 024419 (2014). CrossrefGoogle Scholar
    • 27. J. Wei, Z. Zhu, H. Feng, J. Du, Q. Liu and J. Wang, J. Phys. D: Appl. Phys. 48, 465001 (2015). CrossrefGoogle Scholar
    • 28. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri and G. Finocchio, Sci. Rep. 4, 6784 (2014). CrossrefGoogle Scholar
    • 29. A. Dussaux, P. Schoenherr, K. Koumpouras, J. Chico, K. Chang, L. Lorenzelli, N. Kanazawa, Y. Tokura, M. Garst, A. Bergman, C. L. Degen and D. Meier, Nat. Commun. 7, 12430 (2016). CrossrefGoogle Scholar