World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Advanced Spintronics in Novel Materials and its Applications; Guest Editor: Mansoor Bin Abdul Jalil (National University of Singapore)No Access

Dirac and Weyl Materials: Fundamental Aspects and Some Spintronics Applications

    https://doi.org/10.1142/S2010324716400038Cited by:112 (Source: Crossref)

    Dirac and Weyl materials refer to a class of solid materials which host low-energy quasiparticle excitations that can be described by the Dirac and Weyl equations in relativistic quantum mechanics. Starting with the advent of graphene as the first prominent example, these materials have been attracting tremendous interest owing to their novel fundamental properties as well as the great potential for applications. Here we introduce the basic concepts and notions related to Dirac and Weyl materials and briefly review some recent works in this field, particularly on the conceptual development and the possible spintronics/pseudospintronics applications.

    References

    • 1. P. A. M. Dirac, Proc. R. Soc. London A Mathematical, Physical and Engineering Sciences 117, 610 (1928). CrossrefGoogle Scholar
    • 2. G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, 2009). CrossrefGoogle Scholar
    • 3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004). CrossrefGoogle Scholar
    • 4. M. Xu, T. Liang, M. Shi and H. Chen, Chem. Rev. 113, 3766 (2013). CrossrefGoogle Scholar
    • 5. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutirrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl and J. E. Goldberger, ACS Nano 7, 2898 (2013). CrossrefGoogle Scholar
    • 6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). CrossrefGoogle Scholar
    • 7. H. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981). CrossrefGoogle Scholar
    • 8. H. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 (1981). CrossrefGoogle Scholar
    • 9. D. Pesin and A. H. MacDonald, Nat. Mater. 11, (2012) 409. CrossrefGoogle Scholar
    • 10. O. Vafek and A. Vishwanath, Ann. Rev. Condens. Matter Physics 5 (2014). CrossrefGoogle Scholar
    • 11. T. Wehling, A. Black-Schaffer and A. Balatsky, Adv. Phys. 63, 1 (2014). CrossrefGoogle Scholar
    • 12. Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car and R. J. Cava, Phys. Rev. B 91, 205128 (2015). CrossrefGoogle Scholar
    • 13. B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. (2016). Google Scholar
    • 14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage Learning, 1976). Google Scholar
    • 15. D. Xiao, M.-C. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010). CrossrefGoogle Scholar
    • 16. M. V. Berry, Proc. R. Soc. London A, Math. Phys. Engineering Sciences 392 (1984) 45. CrossrefGoogle Scholar
    • 17. A. P. Schnyder, S. Ryu, A. Furusaki and A. W. W. Ludwig, Phys. Rev. B 78 (2008) 195125. CrossrefGoogle Scholar
    • 18. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). CrossrefGoogle Scholar
    • 19. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). CrossrefGoogle Scholar
    • 20. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nano 7, 699 (2012). CrossrefGoogle Scholar
    • 21. D. Xiao, G.-B. Liu, W. Feng, X. Xu and W. Yao, Phys. Rev. Lett. 108, 196802 (2012). CrossrefGoogle Scholar
    • 22. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). CrossrefGoogle Scholar
    • 23. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). CrossrefGoogle Scholar
    • 24. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang and Z. Fang, Phys. Rev. B 75, 041401 (2007). CrossrefGoogle Scholar
    • 25. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman and A. H. MacDonald, Phys. Rev. B 74, 165310 (2006). CrossrefGoogle Scholar
    • 26. C.-C. Liu, W. Feng and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011). CrossrefGoogle Scholar
    • 27. Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan and S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013). CrossrefGoogle Scholar
    • 28. Y. H. Lu, D. Zhou, T. Wang, S. A. Yang and J. Z. Jiang, Sci. Rep. 6, 21723 (2016). CrossrefGoogle Scholar
    • 29. C.-C. Liu, H. Jiang and Y. Yao, Phys. Rev. B 84, 195430 (2011). CrossrefGoogle Scholar
    • 30. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012). CrossrefGoogle Scholar
    • 31. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng and A. Bansil, Nat. Commun. 4, 1500 (2013). CrossrefGoogle Scholar
    • 32. S. A. Yang, H. Pan and F. Zhang, RSC Adv. 5, 83350 (2015). CrossrefGoogle Scholar
    • 33. Z. Song, C.-C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu and Y. Yao, NPG Asia Mater. 6 (2014) e147. CrossrefGoogle Scholar
    • 34. C.-C. Liu, S. Guan, Z. Song, S. A. Yang, J. Yang and Y. Yao, Phys. Rev. B 90, 085431 (2014). CrossrefGoogle Scholar
    • 35. S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matters (Springer, 2013). Google Scholar
    • 36. J. Wang, S. Deng, Z. Liu and Z. Liu, Natl. Sci. Rev. 2, 22 (2015). CrossrefGoogle Scholar
    • 37. D. Malko, C. Neiss, F. Viñes and A. Görling, Phys. Rev. Lett. 108, 086804 (2012). CrossrefGoogle Scholar
    • 38. L.-C. Xu, R.-Z. Wang, M.-S. Miao, X.-L. Wei, Y.-P. Chen, H. Yan, W.-M. Lau, L.-M. Liu and Y.-M. Ma, Nanoscale 6, 1113 (2014). CrossrefGoogle Scholar
    • 39. X.-F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. Tian and H.-T. Wang, Phys. Rev. Lett. 112, 085502 (2014). CrossrefGoogle Scholar
    • 40. G. Liu, S. B. Liu, B. Xu, C. Y. Ouyang, H. Y. Song, S. Guan and S. A. Yang, J. Phys. Chem. Lett. 6, 4936 (2015). CrossrefGoogle Scholar
    • 41. Y. Lu, D. Zhou, G. Chang, S. Guan, W. Chen, Y. Jiang, J. Jiang, X.-S. Wang, S. A. Yang, Y. P. Feng, Y. Kawazoe and H. Lin, Npj Comput. Mater. 2, 16011 (2016). CrossrefGoogle Scholar
    • 42. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen and Y. Zhang, Nat. Nano 9, 372 (2014). CrossrefGoogle Scholar
    • 43. Y. Lu, W. Xu, M. Zeng, G. Yao, L. Shen, M. Yang, Z. Luo, F. Pan, K. Wu, T. Das, P. He, J. Jiang, J. Martin, Y. P. Feng, H. Lin and X.-S. Wang, Nano Lett. 15, 80 (2014). CrossrefGoogle Scholar
    • 44. S. M. Young and C. L. Kane, Phys. Rev. Lett. 115, 126803 (2015). CrossrefGoogle Scholar
    • 45. Z. Wang, A. Alexandradinata, R. J. Cava and B. A. Bernevig, Nature 532, 189 (2016). CrossrefGoogle Scholar
    • 46. S. Murakami, New J. Phys. 9, 356 (2007). CrossrefGoogle Scholar
    • 47. X. Wan, A. M. Turner, A. Vishwanath and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011). CrossrefGoogle Scholar
    • 48. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011). CrossrefGoogle Scholar
    • 49. L. Lu, L. Fu, J. D. Joannopoulos and M. Soljacic, Nat. Photon. 7, 294 (2013). CrossrefGoogle Scholar
    • 50. M. Gong, S. Tewari and C. Zhang, Phys. Rev. Lett. 107, 195303 (2011). CrossrefGoogle Scholar
    • 51. H. Weng, C. Fang, Z. Fang, B. A. Bernevig and X. Dai, Phys. Rev. X 5, 011029 (2015). Google Scholar
    • 52. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin and M. Z. Hasan, Nat. Commun. 6, 7373 (2015). CrossrefGoogle Scholar
    • 53. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia and M. Z. Hasan, Science 349, 613 (2015). CrossrefGoogle Scholar
    • 54. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian and H. Ding, Phys. Rev. X 5, 031013 (2015). Google Scholar
    • 55. L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yan and Y. L. Chen, Nat. Phys. 11, 728 (2015). CrossrefGoogle Scholar
    • 56. B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi and H. Ding, Nat Phys 11, 724 (2015). CrossrefGoogle Scholar
    • 57. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012). CrossrefGoogle Scholar
    • 58. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai and Z. Fang, Phys. Rev. B 85, 195320 (2012). CrossrefGoogle Scholar
    • 59. Z. Wang, H. Weng, Q. Wu, X. Dai and Z. Fang, Phys. Rev. B 88, 125427 (2013). CrossrefGoogle Scholar
    • 60. X. Xiao, S. A. Yang, Z. Liu, H. Li and G. Zhou, Sci. Rep. 5, 7898 (2015). CrossrefGoogle Scholar
    • 61. B. A. Bernevig, T. L. Hughes and S.-C. Zhang, Science 314, 1757 (2006). CrossrefGoogle Scholar
    • 62. S.-Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, P. P. Shibayev, F.-C. Chou, R. J. Cava and M. Z. Hasan, Science 347, 294 (2015). CrossrefGoogle Scholar
    • 63. G. Xu, H. Weng, Z. Wang, X. Dai and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011). CrossrefGoogle Scholar
    • 64. C. Fang, M. J. Gilbert, X. Dai and B. A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012). CrossrefGoogle Scholar
    • 65. A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai and B. A. Bernevig, Nature 527, 495 (2015). CrossrefGoogle Scholar
    • 66. Y. Xu, F. Zhang and C. Zhang, Phys. Rev. Lett. 115, 265304 (2015). CrossrefGoogle Scholar
    • 67. Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen and S. Zhang, Nano Lett. 15, 6974 (2015). CrossrefGoogle Scholar
    • 68. M. Phillips and V. Aji, Phys. Rev. B 90, 115111 (2014). CrossrefGoogle Scholar
    • 69. H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai and Y. Kawazoe, Phys. Rev. B 92, 045108 (2015). CrossrefGoogle Scholar
    • 70. K. Mullen, B. Uchoa and D. T. Glatzhofer, Phys. Rev. Lett. 115, 026403 (2015). CrossrefGoogle Scholar
    • 71. R. Yu, H. Weng, Z. Fang, X. Dai and X. Hu, Phys. Rev. Lett. 115, 036807 (2015). CrossrefGoogle Scholar
    • 72. Y. Kim, B. J. Wieder, C. L. Kane and A. M. Rappe, Phys. Rev. Lett. 115, 036806 (2015). CrossrefGoogle Scholar
    • 73. Y. Chen, Y.-M. Lu and H.-Y. Kee, Nat. Commun. 6 (2015). Google Scholar
    • 74. Q.-F. Liang, J. Zhou, R. Yu, Z. Wang and H. Weng, Phys. Rev. B 93, 085427 (2016). CrossrefGoogle Scholar
    • 75. Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404 (2013). CrossrefGoogle Scholar
    • 76. C. Fang, Y. Chen, H.-Y. Kee and L. Fu, Phys. Rev. B 92, 081201 (2015). CrossrefGoogle Scholar
    • 77. C. Zhong, Y. Chen, Y. Xie, S. A. Yang, M. L. Cohen and S. B. Zhang, Nanoscale 8, 7232 (2016). CrossrefGoogle Scholar
    • 78. S. A. Yang, H. Pan and F. Zhang, Phys. Rev. Lett. 113, 046401 (2014). CrossrefGoogle Scholar
    • 79. T. Meng and L. Balents, Phys. Rev. B 86, 054504 (2012). CrossrefGoogle Scholar
    • 80. T. Das, Phys. Rev. B 88, 035444 (2013). CrossrefGoogle Scholar
    • 81. J. D. Sau and S. Tewari, Phys. Rev. B 86, 104509 (2012). CrossrefGoogle Scholar
    • 82. D. Xiao, W. Yao and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007). CrossrefGoogle Scholar
    • 83. C.-P. Chuu, M.-C. Chang and Q. Niu, Solid State Commun. 150, 533 (2010). CrossrefGoogle Scholar
    • 84. D. Culcer, Y. Yao and Q. Niu, Phys. Rev. B 72, 085110 (2005). CrossrefGoogle Scholar
    • 85. G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999). CrossrefGoogle Scholar
    • 86. Y. Gao, S. A. Yang and Q. Niu, Phys. Rev. Lett. 112, 166601 (2014). CrossrefGoogle Scholar
    • 87. W. Yao, D. Xiao and Q. Niu, Phys. Rev. B 77, 235406 (2008). CrossrefGoogle Scholar
    • 88. T. Cai, S. A. Yang, X. Li, F. Zhang, J. Shi, W. Yao and Q. Niu, Phys. Rev. B 88, 115140 (2013). CrossrefGoogle Scholar
    • 89. K. F. Mak, K. He, J. Shan and T. F. Heinz, Nat. Nano 7, 494 (2012). CrossrefGoogle Scholar
    • 90. H. Zeng, J. Dai, W. Yao, D. Xiao and X. Cui, Nat. Nano 7, 490 (2012). CrossrefGoogle Scholar
    • 91. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu and J. Feng, Nat. Commun. 3, 887 (2012). CrossrefGoogle Scholar
    • 92. X. Xu, W. Yao, D. Xiao and T. F. Heinz, Nat. Phys. 10, 343 (2014). CrossrefGoogle Scholar
    • 93. K. F. Mak, K. L. McGill, J. Park and P. L. McEuen, Science 344, 1489 (2014). CrossrefGoogle Scholar
    • 94. A. Rycerz, J. Tworzydlo and C. W. J. Beenakker, Nat. Phys. 3, 172 (2007). CrossrefGoogle Scholar
    • 95. D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett. 95, 062107 (2009). CrossrefGoogle Scholar
    • 96. D. Gunlycke and C. T. White, Phys. Rev. Lett. 106, 136806 (2011). CrossrefGoogle Scholar
    • 97. Y. Jiang, T. Low, K. Chang, M. I. Katsnelson and F. Guinea, Phys. Rev. Lett. 110, 046601 (2013). CrossrefGoogle Scholar
    • 98. T. Fujita, M. B. A. Jalil and S. G. Tan, Appl. Phys. Lett. 97, 043508 (2010). CrossrefGoogle Scholar
    • 99. H. Pan, X. Li, H. Jiang, Y. Yao and S. A. Yang, Phys. Rev. B 91, 045404 (2015). CrossrefGoogle Scholar
    • 100. F. Zhang, J. Jung, G. A. Fiete, Q. Niu and A. H. MacDonald, Phys. Rev. Lett. 106, 156801 (2011). CrossrefGoogle Scholar
    • 101. H. Pan, Z. Li, C.-C. Liu, G. Zhu, Z. Qiao and Y. Yao, Phys. Rev. Lett. 112, 106802 (2014). CrossrefGoogle Scholar
    • 102. H. Pan, X. Li, F. Zhang and S. A. Yang, Phys. Rev. B 92, 041404 (2015). CrossrefGoogle Scholar
    • 103. I. Martin, Y. M. Blanter and A. F. Morpurgo, Phys. Rev. Lett. 100, 036804 (2008). CrossrefGoogle Scholar
    • 104. W. Yao, S. A. Yang and Q. Niu, Phys. Rev. Lett. 102, 096801 (2009). CrossrefGoogle Scholar
    • 105. H. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983). CrossrefGoogle Scholar
    • 106. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai and G. Chen, Phys. Rev. X 5, 031023 (2015). Google Scholar
    • 107. C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang, T.-R. Chang, G. Chang, C.-H. Hsu, H.-T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H.-Z. Lu, S.-Q. Shen, T. Neupert, M. Zahid Hasan and S. Jia, Nat. Commun. 7, 10735 (2016). CrossrefGoogle Scholar
    • 108. F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. Dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger and B. Yan, Nat. Commun. 7, 11615 (2016). CrossrefGoogle Scholar
    • 109. S. A. Yang, H. Pan and F. Zhang, Phys. Rev. Lett. 115, 156603 (2015). CrossrefGoogle Scholar
    • 110. Q.-D. Jiang, H. Jiang, H. Liu, Q.-F. Sun and X. C. Xie, Phys. Rev. Lett. 115, 156602 (2015). CrossrefGoogle Scholar
    • 111. F. I. Fedorov, Dokl. Akad. Nauk SSSR 105, 465 (1955). Google Scholar
    • 112. C. Imbert, Phys. Rev. D 5, 787 (1972). CrossrefGoogle Scholar
    • 113. M. Onoda, S. Murakami and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004). CrossrefGoogle Scholar
    • 114. J. Hellerstedt, M. T. Edmonds, N. Ramakrishnan, C. Liu, B. Weber, A. Tadich, K. M. ODonnell, S. Adam and M. S. Fuhrer, Nano Lett. 16, 3210 (2016). CrossrefGoogle Scholar
    • 115. H. Pan, M. Wu, Y. Liu and S. A. Yang, Sci. Rep. 5, 14639 (2015). CrossrefGoogle Scholar
    • 116. X. Xiao, Y. Liu, Z. Liu, G. Ai, S. A. Yang and G. Zhou, Appl. Phys. Lett. 108, 032403 (2016). CrossrefGoogle Scholar