World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

The ISOLPHARM project: A New ISOL production method of high specific activity beta-emitting radionuclides as radiopharmaceutical precursors

    https://doi.org/10.1142/S2010194518601035Cited by:3 (Source: Crossref)
    This article is part of the issue:

    The ISOLPHARM project explores the feasibility of exploiting an innovative technology to produce extremely high specific activity beta-emitting radionuclides as radiopharmaceutical precursors. This technique is expected to produce radiopharmaceuticals that are virtually mainly impossible to obtain in standard production facilities, at lower cost and with less environmental impact than traditional techniques. The groundbreaking ISOLPHARM method investigated in this project has been granted an international patent (INFN). As a component of the SPES (Selective Production of Exotic Species) project at the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Legnaro (INFN–LNL), a new facility will produce radioactive ion beams of neutron-rich nuclei with high purity and a mass range of 80–160 amu. The radioactive isotopes will result from nuclear reactions induced by accelerating 40 MeV protons in a cyclotron to collide on a target of UCx. The uranium in the target material will be 238U, yielding radioactive isotopes that belong to elements with an atomic number between 28 and 57. Isotope separation on line (ISOL) is adopted in the ISOLPHARM project to obtain pure isobaric beams for radiopharmaceutical applications, with no isotopic contaminations in the beam or subsequent trapping substrate. Isobaric contaminations may potentially affect radiochemical and radionuclide purity, but proper methods to separate chemically different elements can be developed.

    References

    • 1. F. Azaiez, A. Bracco, J. Dobeš, A. Jokinen, G.E. Körner, A. Maj, A. Murphy, P. Van Duppen (eds.), Nuclear Physics for Medicine, NuPECC (2014), ISBN: 9782368730089. Google Scholar
    • 2. Handbook of Nuclear Chemistry (Springer, DOI 10.1007/978-1-4419-0720-2). Google Scholar
    • 3. M.J. Welch, C.S. Redvanly, Handbook of Radiopharmaceuticals, Radiochemistry and Applications (Wiley & Sons Ltd, Chichester, 2003). Google Scholar
    • 4. T. Nilsson, Nucl. Instr. Meth. Phys. Res. B 317(B), 194 (2013). CrossrefGoogle Scholar
    • 5. A. Monetti et al., Eur. Phys. J. A. 51, 128 (2015). Crossref, ADSGoogle Scholar
    • 6. S. Corradetti et al., Eur. Phys. J. A. 49, 56 (2013). CrossrefGoogle Scholar
    • 7. M. Manzolaro et al., Nucl. Instr. Meth. Phys. Res. B 317(B), 446 (2013). CrossrefGoogle Scholar
    • 8. I. Kuroda, Ann. Nucl. Med. 26, 197 (2012). CrossrefGoogle Scholar
    • 9. V. Goffredo, A. Paradiso, G. Ranieri, C.D. Gadaleta, Crit. Rev. Oncol. Hematol. 80, 393 (2011). CrossrefGoogle Scholar
    • 10. S.B. Schwarz et al., in Brachytherapy, ed. Kazushi Kishi (InTech, 2012). Google Scholar
    • 11. A. Wyszomirska, Nucl. Med. Rev. 15(2), 120 (2012). Google Scholar
    • 12. J.J. Mathews et al., J. Nucl. Med. 49, 771 (2008). CrossrefGoogle Scholar
    • 13. M. Manzolaro et al., Rev. Sci. Instrum. 85, 02B918 (2014). CrossrefGoogle Scholar
    • 14. M. Manzolaro et al., Rev. Sci. Instrum. 87, 02B502 (2016). CrossrefGoogle Scholar
    • 15. J. Al-Khalili and E. Roeckl (eds.), The Euroschool Lectures on Physics with Exotic Beams, Vol. II (Springer, Berlin, 2006). CrossrefGoogle Scholar
    • 16. R.E. Honig, RCA Review 23, 567 (1962). Google Scholar
    • 17. D.R. Haefner, T.J. Tranter, INL/EXT-07-12299 (Idaho National Laboratory, 2007). Google Scholar
    • 18. P. Paviet-Hartmann, W. Kerlin, S. Bakhtiar, INL/CON-10-19961 (Idaho National Laboratory, 2010). Google Scholar
    • 19. R.C. Rowe, P.J. Sheskey, W.G. Cook, M.E. Fenton (eds.), Handbook of Pharmaceutical Excipients, 7th edition (Pharmaceutical Press, 2012). Google Scholar
    • 20. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, D.F. Quinn, Carbon 40, 2817 (2002). CrossrefGoogle Scholar
    • 21. L.J. Prell, D.L. Styris, Spectrochim. Acta. 46, 45 (1991). CrossrefGoogle Scholar
    • 22. V. Di Noto, D. Ni, L. Dalla Via, F. Scomazzon, M. Vidali, Analys. 120, 1669 (1995). CrossrefGoogle Scholar
    • 23. T. Kaghazchi, N.A. Kolur, R.H. Sabet, Afinidad 542, 338 (2009). Google Scholar