World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

What symmetries can do for you

    https://doi.org/10.1142/S2010194515600769Cited by:1 (Source: Crossref)

    Several applications of Lie symmetries and its generalisation are presented: from turning butterflies into tornados, to its applications in epidemics, population dynamics, and ultimately converting classical problems into the quantum realm. Applications of nonclassical symmetries are also illustrated.

    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.

    References

    • P. M. Harman (ed.), The Scientific Letters and Papers of James Clerk Maxwell Vol. I (Cambridge University Press, Cambridge, 1990) . Google Scholar
    • T.   Hawkins , Arch. Hist. Exact Sciences   42 , 187 ( 1991 ) . CrossrefGoogle Scholar
    • P. J.   Olver , Applications of Lie Groups to Differential Equations ( Springer-Verlag , New York , 1986 ) . CrossrefGoogle Scholar
    • L. V.   Ovsjannikov , Group Analysis of Differential Equations ( Academic Press , New York , 1982 ) . Google Scholar
    • W. F.   Ames , Nonlinear Partial Differential Equations in Engineering   2 ( Academic Press , New York , 1972 ) . Google Scholar
    • G. W.   Bluman and J.   Cole , Similarity Methods for Differential Equations ( Springer-Verlag , New York , 1974 ) . CrossrefGoogle Scholar
    • G. W.   Bluman and S.   Kumei , Symmetries and Differential Equations ( Springer-Verlag , Berlin , 1989 ) . CrossrefGoogle Scholar
    • H.   Stephani , Differential Equations. Their Solution Using Symmetries ( Cambridge University Press , Cambridge , 1989 ) . Google Scholar
    • J. M.   Hill , Differential Equations and Group Methods for Scientists and Engineers ( CRC Press , Boca Raton, FL , 1992 ) . Google Scholar
    • N. H.   Ibragimov (ed.) , CRC Handbook of Lie Group Analysis of Differential Equations , Symmetries, Exact Solutions, and Conservation laws   I ( CRC Press , Boca Raton, FL , 1994 ) . Google Scholar
    • N. H.   Ibragimov , Elementary Lie Group Analysis and Ordinary Differential Equations ( Wiley , New York , 1999 ) . Google Scholar
    • P. E.   Hydon , Symmetry Methods for Differential Equations: A Beginner's Guide ( Cambridge University Press , 2000 ) . CrossrefGoogle Scholar
    • G. W.   Bluman and S. C.   Anco , Symmetry and Integration Methods for Differential Equations ( Springer-Verlag , Berlin , 2002 ) . Google Scholar
    • M. C. Nucci, CRC Handbook of Lie Group Analysis of Differential Equations, New Trends in Theoretical Developments and Computational Methods 3, ed. N. H. Ibragimov (CRC Press, Boca Raton, 1996) p. 415. Google Scholar
    • V. V. Golubev, Lectures on Integration of the Equations of Motions of a Rigid Body about a Fixed Point (State Publishing House of Theoretical Technical Literature, Moscow, 1953) English translation published by the Israel Program for Scientific Literature in 1960 . Google Scholar
    • J. C. Maxwell, Transactions of the Royal Society of Edinburgh XXI (1857) p. 559. Google Scholar
    • L. Euler, Theoria motus corporum solidorum seu rigidorum ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata (Litteris et Impensis A. F. Röse, Rostochii et Gryphiswaldiae, 1765) . Google Scholar
    • L. Poinsot, J. Math. Pures Appl. 16, 9 (Première et deuxième Parties) 289 (Troisième et dernière Parties) (1851) . Google Scholar
    • K. G. J.   Jacobi , J. Reine Angew. Math.   39 , 293 ( 1850 ) . CrossrefGoogle Scholar
    • A.   Natucci , Atti Accad. Ligure   9 , 40 ( 1953 ) . Google Scholar
    • K. G. J.   Jacobi , Fundamenta Nova Theoriae Functionum Ellipticarum ( Fratrum Borntraeger , Regiomonti , 1829 ) . Google Scholar
    • L. Rosati, M. C. Nucci, and F. Mezzanotte, Edizione italiana e rilettura dei FUNDAMENTA NOVA di K. G. J. Jacobi a 150 anni dalla morte (18 Febbraio 1851 - 18 Febbraio 2001), Preprint RT n. 2001-4, Dipartimento di Matematica e Informatica, Università di Perugia (2001) . Google Scholar
    • E. N.   Lorenz , J. Atmos. Sci.   20 , 130 ( 1963 ) . Crossref, ADSGoogle Scholar
    • Lord Rayleigh, Phil. Mag. 32, 529 (1916) . Google Scholar
    • B.   Saltzman , J. Atmos. Sci.   19 , 329 ( 1962 ) . Crossref, ADSGoogle Scholar
    • A. D.   Dalmedico , Arch. His. Exact Sciences   55 , 395 ( 2001 ) . CrossrefGoogle Scholar
    • H. Segur, Solitons and the Inverse Scattering Transform, Lect. Int. School Phys. 'Enrico Fermi', Varenna, Italy, 7-19 July (1980) Published in: Topics in Ocean-Physics, edited by A. R. Osborne and P. Malanotte Rizzoli (North-Holland, Amsterdam, 1982), p. 235 . Google Scholar
    • M. C.   Nucci , Mathl. Comput. Modelling   25 , 181 ( 1997 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Math. Phys.   44 , 4107 ( 2003 ) . Crossref, ADSGoogle Scholar
    • T.   Sen and M.   Tabor , Physica D   44 , 313 ( 1990 ) . Crossref, ADSGoogle Scholar
    • G. M.   Murphy , Ordinary Differential Equations and Their Solutions ( Van Nostrand , Princeton , 1960 ) . Google Scholar
    • S.   Lie , Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen ( Teubner , Leipzig , 1912 ) . Google Scholar
    • M. C. Nucci, Using Lie symmetries in epidemiology, In Conference on Diff. Eqns. and Appl. in Math. Biology, Nanaimo, BC, Canada. Electron. J. Diff. Eqns., Conference 12 (2004) p. 87 . Google Scholar
    • W. R.   Derrick and P.   van den Driessche , J. Math. Bio.   31 , 495 ( 1993 ) . CrossrefGoogle Scholar
    • M. Rellini, Risoluzione di un modello deterministico non lineare che descrive l'epidemiologia dell'influenza, Mathematics thesis supervised by M. C. Nucci (University of Perugia, Italy, 2000) . Google Scholar
    • L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti (Bousquet, Lausanne et Geneva, 1744) . Google Scholar
    • J. L.   Lagrange , Miscellanea physico-mathematica societatis Taurinensia   2 , 407 ( 1760 ) . Google Scholar
    • H.   Helmholtz , J. Reine Angew. Math.   100 , 137 ( 1887 ) . CrossrefGoogle Scholar
    • V.   Volterra , Rend. Acc. Lincei ser.IV   III , 274 ( 1887 ) . Google Scholar
    • N. Ya.   Sonin , Warsaw Univ. Izvestiya   2 , 1 ( 1886 ) . Google Scholar
    • K. G. J.   Jacobi , J. Reine Angew. Math.   29 , 333 ( 1845 ) . CrossrefGoogle Scholar
    • K. G. J. Jacobi, Vorlesungen über Dynamik. Nebst fünf hinterlassenen Abhandlungen desselben herausgegeben von A. Clebsch (Druck und Verlag von Georg Reimer, Berlin, 1884) . Google Scholar
    • K. G. J. Jacobi, Jacobi's Lectures on Dynamics tr. by K. Balagangadharan, ed. by Biswarup Banerjee, Industan Book Agency, (American Mathematical Society, Providence, 2009) . Google Scholar
    • V. Volterra, Proposta di una Associazione Italiana per il Progresso delle Scienze, Atti del Congresso dei Naturalisti Italiani (Zanichelli, Bologna, 1920) p. 146. Google Scholar
    • M. C.   Nucci and A. M.   Arthurs , Proc. R. Soc. A   466 , 2309 ( 2010 ) . Crossref, ADSGoogle Scholar
    • M. E.   Fels , Trans. Amer. Math. Soc.   348 , 5007 ( 1996 ) . CrossrefGoogle Scholar
    • M.   Juráš , Acta Applicandae Mathematicae   66 , 25 ( 2001 ) . CrossrefGoogle Scholar
    • S. Lie, Forhandlinger I Videnskabs-Selskabet I Christiania (1874) p. 255. Google Scholar
    • E. Tonti, Differential Geometry, Calculus of Variations and Their Applications, eds. T. M. Rassiase and G. M. Rassias (Marcel Dekker, New York, 1985) p. 497. Google Scholar
    • E.   Tonti , Bull. Acad. Roy. Belg.   55 , 262 ( 1969 ) . Google Scholar
    • F.   Magri , Int. J. Engng. Sci.   12 , 537 ( 1974 ) . CrossrefGoogle Scholar
    • W. M. Tulczyjew, The Euler-Lagrange resolution, In Lecture Notes in Mathematics No. 836 (Springer-Verlag, New York, 1980) p. 22 . Google Scholar
    • V.   Sarlet , J. Phys. A: Math. Gen.   15 , 1503 ( 1982 ) . Crossref, ADSGoogle Scholar
    • A. M.   Vinogradov , J. Math. Anal. Appl.   100 , 1 ( 1984 ) . CrossrefGoogle Scholar
    • I. M.   Anderson and G.   Thompson , The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations ( American Mathematical Society , Providence , 1992 ) . CrossrefGoogle Scholar
    • M. C.   Nucci and K. M.   Tamizhmani , J. Nonlinear Math. Phys.   19 , 1250021 ( 2012 ) . LinkGoogle Scholar
    • H.   Bateman , Phys. Rev.   38 , 815 ( 1931 ) . Crossref, ADSGoogle Scholar
    • M. C.   Nucci and P. G. L.   Leach , Phys. Scripta   83 , 035007 ( 2011 ) . CrossrefGoogle Scholar
    • J.   Douglas , Trans. Amer. Math. Soc.   50 , 71 ( 1941 ) . CrossrefGoogle Scholar
    • S. L.   Trubatch and A.   Franco , J. Theor. Biol.   48 , 299 ( 1974 ) . CrossrefGoogle Scholar
    • G. H.   Paine , Bull. Math. Biol.   44 , 749 ( 1982 ) . Google Scholar
    • V.   Volterra , Human Biology   11 , 173 ( 1939 ) . Google Scholar
    • S.   Lie , Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen ( Teubner , Leipzig , 1912 ) . Google Scholar
    • L.   Bianchi , Lezioni sulla teoria dei gruppi continui finiti di trasformazioni ( Enrico Spoerri , Pisa , 1918 ) . Google Scholar
    • E. T.   Whittaker , A Treatise on the Analytical Dynamics of Particles and Rigid Bodies ( Cambridge University Press , Cambridge , 1999 ) . Google Scholar
    • C.   Nucci and P. G. L.   Leach , J. Math. Phys.   48 , 123510 ( 2007 ) . Crossref, ADSGoogle Scholar
    • M. C.   Nucci and P. G. L.   Leach , Il Nuovo Cimento B   123 , 93 ( 2008 ) . Google Scholar
    • E.   Noether , Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen Math-phys. Klasse   235 ( 1918 ) . Google Scholar
    • V.   Volterra V , Acta Biotheoretica   3 , 1 ( 1937 ) . CrossrefGoogle Scholar
    • D.   Schuch and M.   Moshinsky , Phys. Rev. A   73 , 062111 ( 2006 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , P. G. L.   Leach and K.   Andriopoulos , J. Math. Anal. Appl.   319 , 357 ( 2006 ) . CrossrefGoogle Scholar
    • H.   Goldstein , Classical Mechanics , 2nd edn. ( Addison-Wesley , Reading , 1980 ) . Google Scholar
    • M. C.   Nucci and P. G. L.   Leach , J. Math. Anal. Appl.   406 , 219 ( 2013 ) . CrossrefGoogle Scholar
    • D.   Bjorken and S. D.   Drell , Relativistic Quantum Mechanics ( McGraw-Hill Book Co. , New York , 1964 ) . Google Scholar
    • W. H.   Louisell , Quantum Statistical Properties of Radiation ( John Wiley & Sons , New York , 1990 ) . Google Scholar
    • H.   Weyl , Zeitschrift für Physik   46 , 1 ( 1927 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , Theor. Math. Phys.   168 , 997 ( 2011 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Phys.: Conf. Ser.   380 , 012008 ( 2012 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Nonlinear Math. Phys.   20 , 451 ( 2013 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , Math. Notes Miskolc   14 , 461 ( 2013 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Phys.: Conf. Ser.   482 , 012032 ( 2014 ) . CrossrefGoogle Scholar
    • G.   Sierra , J. Phys. A: Math. Theor.   45 , 055209 ( 2012 ) . CrossrefGoogle Scholar
    • G.   Gubbiotti and M. C.   Nucci , J. Nonlinear Math. Phys.   21 , 248 ( 2014 ) . CrossrefGoogle Scholar
    • G. Gubbiotti and M. C. Nucci, Quantization of quadratic Liénard-type equations by preserving symmetries, to appear in J. Math. Anal. Appl. (2015) . Google Scholar
    • V.   Chithiika Ruby , M.   Senthilvelan and M.   Lakshmanan , J. Phys. A: Math. Theor.   45 , 382002 ( 2012 ) . CrossrefGoogle Scholar
    • A. G.   Choudhury and P.   Guha , J. Phys. A: Math. Theor.   46 , 165202 ( 2013 ) . Crossref, ADSGoogle Scholar
    • M. C.   Nucci and P. G. L.   Leach , J. Math. Phys.   49 , 073517 ( 2008 ) . CrossrefGoogle Scholar
    • M. C.   Nucci and K. M.   Tamizhmani , Il Nuovo Cimento B   125 , 255 ( 2010 ) . Google Scholar
    • M. C.   Nucci and K. M.   Tamizhmani , J. Nonlinear Math. Phys.   17 , 167 ( 2010 ) . Link, ADSGoogle Scholar
    • C. G.   Darwin , Proc. R. Soc. Lond. A   117 , 258 ( 1927 ) . CrossrefGoogle Scholar
    • A.   González-López , J. Math. Phys.   29 , 1097 ( 1988 ) . CrossrefGoogle Scholar
    • G. W.   Bluman and J. D.   Cole , J. Math. Mech.   18 , 1025 ( 1969 ) . Google Scholar
    • W. I.   Fushchych , W. M.   Shtelen and M. I.   Serov , Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics ( Kluwer , Dordrecht , 1993 ) . CrossrefGoogle Scholar
    • R.   Cherniha , J. Math. Anal. Appl.   326 , 783 ( 2007 ) . CrossrefGoogle Scholar
    • R. O.   Popovych , J. Phys. A: Math. Theor.   41 , 185202 ( 2008 ) . CrossrefGoogle Scholar
    • B.   Kruglikov , Acta Appl. Math.   101 , 145 ( 2008 ) . CrossrefGoogle Scholar
    • N. N. Yanenko, Compatibility theory and integration methods for systems of nonlinear partial differential equations, Proc. Fourth All-Union Math. Congr. in Leningrad 1961II (Nauka, Leningrad, 1964) p. 247. Google Scholar
    • A. F.   Sidorov , V. P.   Shapeev and N. N.   Yanenko , The method of differential constraints and its applications in gas dynamics ( Nauka , Novosibirsk , 1984 ) . Google Scholar
    • V. G.   Dulov et al. , Russ. Math. Surv.   39 , 99 ( 1984 ) . CrossrefGoogle Scholar
    • S. V.   Meleshko , Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and Analytical Techniques with Applications to Engineering ( Springer-Verlag , New York , 2005 ) . Google Scholar
    • V. A.   Galaktionov , Diff. Int. Eqns.   3 , 863 ( 1990 ) . Google Scholar
    • J. R.   King , Physica D   64 , 35 ( 1993 ) . Crossref, ADSGoogle Scholar
    • M. C.   Nucci , Physica D   78 , 124 ( 1994 ) . Crossref, ADSGoogle Scholar
    • G. Guthrie, Constructing Miura transformations using symmetry groups, Research Report No. 85 (1993) . Google Scholar
    • E. M.   Vorob'ev , Differ. Eqs.   25 , 322 ( 1989 ) . Google Scholar
    • P. J.   Olver , Proc. R. Soc. Lond. A   444 , 509 ( 1994 ) . Crossref, ADSGoogle Scholar
    • A. S.   Fokas and Q. M.   Liu , Theor. Math. Phys.   99 , 263 ( 1994 ) . CrossrefGoogle Scholar
    • R. Z.   Zhdanov , J. Phys. A: Math. Gen.   28 , 3841 ( 1995 ) . Crossref, ADSGoogle Scholar
    • M. C.   Nucci , J. Phys. A: Math. Gen.   29 , 8117 ( 1996 ) . Crossref, ADSGoogle Scholar
    • J.   Goard , Appl. Math. Lett.   16 , 481 ( 2003 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Math. Anal. Appl.   279 , 168 ( 2003 ) . CrossrefGoogle Scholar
    • H.   Berestycki et al. , Bull. Math. Biol.   71 , 399 ( 2009 ) . CrossrefGoogle Scholar
    • M. S.   Hashemi and M. C.   Nucci , J. Nonlinear Math. Phys.   20 , 44 ( 2013 ) . CrossrefGoogle Scholar
    • M. C.   Nucci , J. Math. An. Appl.   178 , 294 ( 1993 ) . CrossrefGoogle Scholar
    • F.   Allassia and M. C.   Nucci , J. Math. An. Appl.   201 , 911 ( 1996 ) . CrossrefGoogle Scholar
    • S.   Martini , N.   Ciccoli and M. C.   Nucci , J. Nonlinear Math. Phys.   16 , 77 ( 2009 ) . LinkGoogle Scholar