Dielectric spectroscopy and structural characterization of nano-filler-loaded epoxy resin
Abstract
This work outlines the characterization of epoxy resin [Bisphenol A-(epichlorhydrin): epoxy] and hardener [(3-dimethylaminopropyl)-1,3-propylenediamine] with various inorganic nano-fillers. Dielectric characterizations of epoxy, hardener, neat epoxy (epoxy + hardener) and nano-epoxy (nano-filler + neat epoxy) composites loaded with 1 wt.% of inorganic nano-fillers (SiO2, Al2O3, TiO2 and ZnO) were carried out using precision LCR meter, over the frequency range of 1 kHz–2 MHz at a constant temperature of 300.15 K. The structural information of nano-fillers, neat epoxy and nano-epoxy composites was understood by Fourier transform infrared spectroscopy and by XRD. Moreover, hardness and shear strength (shear punch) were also determined in order to gain additional information about the mechanical properties of epoxy composite. Influence of inorganic nano-fillers on the dielectric properties, structural chemistry and mechanical properties of neat epoxy composite is discussed thoroughly in this study.
References
- 1. , Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine, Compos. A, Appl. Sci. Manuf. 118, 302 (2019). Crossref, Google Scholar
- 2. , Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength, RSC Adv. 4, 21010 (2014). Crossref, Google Scholar
- 3. , Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites, J. Mater. Sci. Technol. 34, 2424 (2018). Crossref, Google Scholar
- 4. , Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength, J. Mater. Sci. 52, 4299 (2017). Crossref, Google Scholar
- 5. , Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide, Mater. Des. 90, 66 (2016). Crossref, Google Scholar
- 6. , Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength, Compos. Sci. Technol. 110, 152 (2015). Crossref, Google Scholar
- 7. , Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties, Carbon 69, 467 (2014). Crossref, Google Scholar
- 8. , Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties, Compos. Sci. Technol. 104, 81 (2014). Crossref, Google Scholar
- 9. , Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties, Compos. B, Eng. 94, 102 (2016). Crossref, Google Scholar
- 10. , Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler, Carbon 48, 1171 (2010). Crossref, Google Scholar
- 11. , Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites, Compos. A, Appl. Sci. Manuf. 90, 736 (2016). Crossref, Google Scholar
- 12. , Effect of various nanoparticles on friction and wear properties of glass fiber reinforced epoxy composites, Adv. Mater. Res. 4, 1106 (2011). Google Scholar
- 13. , Dielectric nanocomposites with insulating properties, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005). Crossref, Google Scholar
- 14. , Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys. 99, 24308 (2006). Crossref, Google Scholar
- 15. , Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz, IEEE Trans. Dielectr. Electr. Insul. 15, 2 (2008). Crossref, Google Scholar
- 16. , Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers, Proc. 17th Annu. Meeting IEEE Lasers Electro-Optics Society (2004), pp. 406–409. Google Scholar
- 17. , Dielectric properties of epoxy nanocomposites, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008). Crossref, Google Scholar
- 18. , Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers, J. Adv. Res. Phys. 1, 011011 (2017). Google Scholar
- 19. , Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite, J. Therm. Anal. Calorim. 103, 731 (2010). Crossref, Google Scholar
- 20. , Cluster size effect in hardness of nanoclay/epoxy composites, Compos. B, Eng. 36, 263 (2005). Crossref, Google Scholar
- 21. , Dielectric spectroscopy of SiO2, ZnO-nanoparticle loaded epoxy resin in the frequency range of 20 Hz to 2 MHz, AIP Conf. Proc. 1837, 040025 (2017). Crossref, Google Scholar
- 22. , Dielectric characterization of TiO2, Al2O3-nanoparticle loaded epoxy resin, AIP Conf. Proc. 1953, 050049 (2018). Crossref, Google Scholar
- 23. , Dielectric spectroscopy of mixed nanoparticle loaded epoxy resin, Int. J. Sci. Res. Rev. 7, 426 (2018). Google Scholar
- 24. , Nanocomposites and Polymers with Analytical Methods, Chapter 11 (InTechOpen, 2011), pp. 261–284. Google Scholar
- 25. , Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol. 63, 2055 (2003). Crossref, Google Scholar
- 26. , Synthesis and mechanical properties of TiO2-epoxy nanocomposites, Nanostruct. Mater. 12, 507 (1999). Crossref, Google Scholar
- 27. M. N. Bin Zainal, Polymer layered silicates nanocomposite: PLS nanocomposite, Thesis, Universitat Politècnica de Catalunya (2015). Google Scholar
- 28. , Preparation of epoxy nanocomposites and studying their mechanical, thermal and morphology properties, J. Kerbala Univ. 8, 94 (2015). Google Scholar
- 29. , Glass transition and relaxation behavior of epoxy nanocomposites, J. Polym. Sci. B, Polym. Phys. 42, 3849 (2004). Crossref, Google Scholar
- 30. , Dielectric spectroscopic study of the binary mixtures of amino silicone oil and methyl ethyl ketone in the frequency range of 100 Hz to 2 MHz at 298.15 K temperature, J. Mol. Liq. 271, 686 (2018). Crossref, Google Scholar
- 31. Keysight Technologies, Keysight E4980A/A Precision LCR Meter Keysight E4980A/AL, Data Sheet (2017). Google Scholar
- 32. Keysight Technologies, Keysight 16451B Dielectric Test Fixture, Operation and Service Manuel (2008). Google Scholar
- 33. Bureau of Indian Standards, IS 13360-5-11: Plastics — Methods of Testing, Part 5: Mechanical Properties, Section 11: Determination of Indentation Hardness of Plastics by Means of Durometer (Shore Hardness), Indian Standard, Petroleum, Coal, and Related Products, Plastics (1992). Google Scholar
- 34. Bureau of Indian Standards, IS 2036: Phenolic Laminated Sheets: Specification, Indian Standard (1995). Google Scholar
- 35. The Krishnan Group/Wilcox 132, University of Washington, Rigaku XRD-System Instruction Manual v4/19/03 (2019), http://depts.washington.edu/kkgroup/facilities/PDF/InstructionManualPDF.pdf. Google Scholar
- 36. , Dielectric spectroscopic and molecular dynamic study of aqueous solutions of paracetamol, J. Mol. Liq. 290, 111203 (2019). Crossref, Google Scholar
- 37. , The role of ionic diffusion in polarisation in vitreous ionic conductors, Phys. Chem. Glasses 13, 171 (1972). Google Scholar
- 38. , Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels, J. Polym. Sci. B, Polym. Phys. 33, 1737 (1995). Crossref, Google Scholar
- 39. , Electrode polarization and ionic conduction relaxation in mixtures of 3-bromoanisole and 1-propanol in the frequency range of 20 Hz to 2 MHz at different temperatures, J. Mol. Liq. 254, 216 (2018). Crossref, Google Scholar
- 40. , Electrical properties of epoxy resin based nano-composites, Nanotechnology 18, 025703 (2006). Crossref, Google Scholar
- 41. , Advances in Cryogenic Engineering Materials, Chapter 46 (Springer, Boston, 2000), pp. 361–368. Crossref, Google Scholar
- 42. , Monitoring cure viscosity of epoxy composite, Polym. Compos. 3, 162 (1982). Crossref, Google Scholar
- 43. , Interrelationship between viscosity and electrical properties for edible oils, J. Food Sci. Technol. 50, 549 (2013). Crossref, Google Scholar
- 44. , Characterization of relaxation processes over static permittivity frequency regime and compliance of the Stokes-Einstein-Nernst relation in propylene carbonate, J. Mol. Liq. 225, 42 (2017). Crossref, Google Scholar
- 45. , Relationship between viscosity and direct current conductivity in PVC, J. Polym. Sci. A-1, Polym. Chem. 4, 337 (1966). Crossref, Google Scholar
- 46. , Compliance of the Stokes–Einstein model and breakdown of the Stokes–Einstein–Debye model for a urea-based supramolecular polymer of high viscosity, Soft Matter 10, 8457 (2014). Crossref, Google Scholar
- 47. , Investigation of the thermal and dielectric behavior of epoxy nano-hybrids by using silane modified nano-ZnO, Silicon 10, 1291 (2018). Crossref, Google Scholar
- 48. , Dielectric behaviour of nano-TiO2 bulks, Phys. Status Solidi 157, 483 (1996). Crossref, Google Scholar
- 49. , AC properties of metal-oxide varistors, J. Appl. Phys. 47, 1117 (1976). Crossref, Google Scholar
- 50. , Internal charge behaviour of nanocomposites, Nanotechnology 15, 586 (2004). Crossref, Google Scholar
- 51. , Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers: 4: Long-range ion transport, Macromolecules 22, 4483 (1989). Crossref, Google Scholar
- 52. , Size dependence of dielectric constant in a single pencil-like ZnO nanowire, Nano Lett. 12, 1919 (2012). Crossref, Google Scholar
- 53. , The ‘universal’ dielectric response, Nature 267, 673 (1977). Crossref, Google Scholar
- 54. , Dielectric relaxation in solids, J. Phys. D, Appl. Phys. 32, R57 (1999). Crossref, Google Scholar
- 55. , Dielectric properties of epoxy/short carbon fiber composites, J. Mater. Sci. 45, 5196 (2010). Crossref, Google Scholar
- 56. , Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks, J. Polym. Sci. B, Polym. Phys. 54, 1918 (2016). Crossref, Google Scholar
- 57. , Preparation, characterization and dielectric properties of epoxy and polyethylene nanocomposites, IEEJ Trans. Fundam. Mater. 126, 1105 (2006). Crossref, Google Scholar
- 58. , The electrical conduction in polyimide nanocomposites, Proc. 2003 Annu. Report Conf. Electrical Insulation and Dielectric Phenomena (2003), pp. 116–119. Crossref, Google Scholar
- 59. , Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites, Mater. Des. 42, 214 (2012). Crossref, Google Scholar
- 60. , Preparation and various characteristics of epoxy/alumina nanocomposites, IEEJ Trans. Fundam. Mater. 126, 1121 (2006). Crossref, Google Scholar
- 61. , A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites, Compos. B, Eng. 165, 65 (2019). Crossref, Google Scholar
- 62. , Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceram. Int. 44, 1220 (2018). Crossref, Google Scholar
- 63. , Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Mater. Des. 31, 2406 (2010). Crossref, Google Scholar
- 64. , The effect of TiO2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites, Int. J. Eng. Trans. B, Appl. 30, 807 (2017). Google Scholar
- 65. , Reinforcing effect of organoclay in rubbery and glassy epoxy resins, part 1: Dispersion and properties, J. Appl. Polym. Sci. 107, 1154 (2008). Crossref, Google Scholar
- 66. , Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin, Wear 268, 1295 (2010). Crossref, Google Scholar
- 67. , The effect of ZnO nanoparticles on the mechanical, tribological and antibacterial properties of ultra-high molecular weight polyethylene, J. Reinf. Plast. Compos. 33, 674 (2014). Crossref, Google Scholar
- 68. , Effect of Al2O3 and SiO2 nanopartical on wear, hardness and impact behavior of epoxy composites, Chem. Mater. Res. 7, 34 (2015). Google Scholar
- 69. , Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites, Polym. Test. 93, 106890 (2021). Crossref, Google Scholar
- 70. , Synthesis of hybrid SiC/SiO2 nanoparticles and their polymer nanocomposites, Int. J. Nanosci. 12, 1350008 (2013). Link, Google Scholar
- 71. , Crystalline silica nanowires, J. Mater. Res. 19, 2216 (2004). Crossref, Google Scholar
- 72. , Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue, Chem. Sci. Int. J. 5, 1 (2015). Google Scholar
- 73. , Precipitation of amorphous SiO2 particles and their properties, Braz. J. Chem. Eng. 28, 89 (2011). Crossref, Google Scholar
- 74. , Induced transformation of amorphous silica to cristobalite on bacterial surfaces, RSC Adv. 5, 71844 (2015). Crossref, Google Scholar
- 75. , Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells, J. Mater. Chem. A 2, 10244 (2014). Crossref, Google Scholar
- 76. , Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. (Nat. Sci.) 42, 357 (2008). Google Scholar
- 77. , Titanium Dioxide: Material for a Sustainable Environment, Chapter 3 (InTechOpen, 2018), pp. 57–80. Google Scholar
- 78. , Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method, Appl. Sci. 10, 993 (2020). Crossref, Google Scholar
- 79. , Preparation of high pure -Al2O3 nanoparticles at low temperatures using Pechini method, Ceram. Int. 38, 2021 (2012). Crossref, Google Scholar
- 80. , Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived -Al2O3 nanoparticles, J. Asian Ceram. Soc. 3, 345 (2015). Crossref, Google Scholar
- 81. , Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction, Spectrochim. Acta B, At. Spectrosc. 55, 1051 (2000). Crossref, Google Scholar
- 82. , Using modified Pechini method to synthesize -Al2O3 nanoparticles of high surface area, Ceram. Int. 38, 4861 (2012). Crossref, Google Scholar
- 83. , Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1), Int. J. Nano Dimens. 1, 279 (2011). Google Scholar
- 84. , Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8, 123 (2014). Crossref, Google Scholar
- 85. , Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing, Chin. Phys. B 23, 018504 (2013). Crossref, Google Scholar
- 86. , X-ray peak broadening analysis in ZnO nanoparticles, Solid State Commun. 149, 1919 (2009). Crossref, Google Scholar
- 87. T. Theivasanthi and M. Alagar, Titanium dioxide ( nanoparticles XRD analyses: An insight, Preprint, arXiv:1307.1091 [physics.chem-ph] (2013). Google Scholar
- 88. , Effect of aluminium particles on mechanical and morphological properties of epoxy nanocomposites, APTEFF 48, 25 (2017). Crossref, Google Scholar
- 89. , Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study, J. Coat. Technol. Res. 13, 159 (2016). Crossref, Google Scholar
- 90. , Influence of SiO2 content and exposure periods on the anticorrosion behavior of epoxy nanocomposite coatings, Coatings 10, 118 (2020). Crossref, Google Scholar
- 91. , tMWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite, Ultrason. Sonochem. 41, 37 (2018). Crossref, Google Scholar
- 92. , Investigation of optical properties of polycarbonate/TiO2/ZnO nanocomposite: Experimental and DFT calculations, J. Inorg. Organomet. Polym. Mater. 30, 5283 (2020). Crossref, Google Scholar
- 93. , Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications, J. Coat. Technol. Res. 10, 679 (2013). Crossref, Google Scholar