World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Dielectric spectroscopy and structural characterization of nano-filler-loaded epoxy resin

    https://doi.org/10.1142/S2010135X21500119Cited by:20 (Source: Crossref)

    This work outlines the characterization of epoxy resin [Bisphenol A-(epichlorhydrin): epoxy] and hardener [N(3-dimethylaminopropyl)-1,3-propylenediamine] with various inorganic nano-fillers. Dielectric characterizations of epoxy, hardener, neat epoxy (epoxy + hardener) and nano-epoxy (nano-filler + neat epoxy) composites loaded with 1 wt.% of inorganic nano-fillers (SiO2, Al2O3, TiO2 and ZnO) were carried out using precision LCR meter, over the frequency range of 1 kHz–2 MHz at a constant temperature of 300.15 K. The structural information of nano-fillers, neat epoxy and nano-epoxy composites was understood by Fourier transform infrared spectroscopy and by XRD. Moreover, hardness and shear strength (shear punch) were also determined in order to gain additional information about the mechanical properties of epoxy composite. Influence of inorganic nano-fillers on the dielectric properties, structural chemistry and mechanical properties of neat epoxy composite is discussed thoroughly in this study.

    References

    • 1. Z. Wang, M. Yang, Y. Cheng, J. Liu, B. Xiao, S. Chen, J. Huang, Q. Xie, G. Wu and H. Wu , Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine, Compos. A, Appl. Sci. Manuf. 118, 302 (2019). CrossrefGoogle Scholar
    • 2. L. Fang, C. Wu, R. Qian, L. Xie, K. Yang and P. Jiang , Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength, RSC Adv. 4, 21010 (2014). CrossrefGoogle Scholar
    • 3. M. Khan, A. A. Khurram, T. Li, T. Zhao, T. Subhani, I. H. Gul, Z. Ali and V. Patel , Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites, J. Mater. Sci. Technol. 34, 2424 (2018). CrossrefGoogle Scholar
    • 4. Z. Wang, Y. Cheng, H. Wang, M. Yang, Y. Shao, X. Chen and T. Tanaka , Sandwiched epoxy–alumina composites with synergistically enhanced thermal conductivity and breakdown strength, J. Mater. Sci. 52, 4299 (2017). CrossrefGoogle Scholar
    • 5. T. K. B. Sharmila, J. V. Antony, M. P. Jayakrishnan, P. M. S. Beegum and E. T. Thachil , Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide, Mater. Des. 90, 66 (2016). CrossrefGoogle Scholar
    • 6. M. Donnay, S. Tzavalas and E. Logakis , Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength, Compos. Sci. Technol. 110, 152 (2015). CrossrefGoogle Scholar
    • 7. Y.-J. Wan, L.-C. Tang, L.-X. Gong, D. Yan, Y.-B. Li, L.-B. Wu, J.-X. Jiang and G.-Q. Lai , Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties, Carbon 69, 467 (2014). CrossrefGoogle Scholar
    • 8. J. Li, Z. Wu, C. Huang and L. Li , Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties, Compos. Sci. Technol. 104, 81 (2014). CrossrefGoogle Scholar
    • 9. Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai and X.-W. Yuan , Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties, Compos. B, Eng. 94, 102 (2016). CrossrefGoogle Scholar
    • 10. T. Zhou, X. Wang, X. Liu and D. Xiong , Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler, Carbon 48, 1171 (2010). CrossrefGoogle Scholar
    • 11. R. K. Nayak, K. K. Mahato and B. C. Ray , Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites, Compos. A, Appl. Sci. Manuf. 90, 736 (2016). CrossrefGoogle Scholar
    • 12. Y. K. Wang, L. Chen and Z. W. Xu , Effect of various nanoparticles on friction and wear properties of glass fiber reinforced epoxy composites, Adv. Mater. Res. 4, 1106 (2011). Google Scholar
    • 13. T. Tanaka , Dielectric nanocomposites with insulating properties, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005). CrossrefGoogle Scholar
    • 14. P. Gonon and A. Boudefel , Electrical properties of epoxy/silver nanocomposites, J. Appl. Phys. 99, 24308 (2006). CrossrefGoogle Scholar
    • 15. S. Singha and M. J. Thomas , Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz, IEEE Trans. Dielectr. Electr. Insul. 15, 2 (2008). CrossrefGoogle Scholar
    • 16. J. C. Fothergill, J. K. Nelson and M. Fu , Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers, Proc. 17th Annu. Meeting IEEE Lasers Electro-Optics Society (2004), pp. 406–409. Google Scholar
    • 17. S. Singha and M. J. Thomas , Dielectric properties of epoxy nanocomposites, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008). CrossrefGoogle Scholar
    • 18. I. Plesa , Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers, J. Adv. Res. Phys. 1, 011011 (2017). Google Scholar
    • 19. B. Ramezanzadeh, M. M. Attar and M. Farzam , Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite, J. Therm. Anal. Calorim. 103, 731 (2010). CrossrefGoogle Scholar
    • 20. C.-K. Lam, H. Cheung, K. Lau, L. Zhou, M. Ho and D. Hui , Cluster size effect in hardness of nanoclay/epoxy composites, Compos. B, Eng. 36, 263 (2005). CrossrefGoogle Scholar
    • 21. S. Thakor, V. A. Rana and H. P. Vankar , Dielectric spectroscopy of SiO2, ZnO-nanoparticle loaded epoxy resin in the frequency range of 20 Hz to 2 MHz, AIP Conf. Proc. 1837, 040025 (2017). CrossrefGoogle Scholar
    • 22. S. G. Thakor, V. A. Rana and H. P. Vankar , Dielectric characterization of TiO2, Al2O3-nanoparticle loaded epoxy resin, AIP Conf. Proc. 1953, 050049 (2018). CrossrefGoogle Scholar
    • 23. S. G. Thakor, V. A. Rana and H. P. Vankar , Dielectric spectroscopy of mixed nanoparticle loaded epoxy resin, Int. J. Sci. Res. Rev. 7, 426 (2018). Google Scholar
    • 24. D. M. Marquis, E. Guillaume and C. Chivas-Joly , Nanocomposites and Polymers with Analytical Methods, Chapter 11 (InTechOpen, 2011), pp. 261–284. Google Scholar
    • 25. B. Wetzel, F. Haupert and M. Q. Zhang , Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol. 63, 2055 (2003). CrossrefGoogle Scholar
    • 26. C. B. Ng, L. S. Schadler and R. W. Siegel , Synthesis and mechanical properties of TiO2-epoxy nanocomposites, Nanostruct. Mater. 12, 507 (1999). CrossrefGoogle Scholar
    • 27. M. N. Bin Zainal, Polymer layered silicates nanocomposite: PLS nanocomposite, Thesis, Universitat Politècnica de Catalunya (2015). Google Scholar
    • 28. J. R. Ugal and M. E. Abd Al-Fattah , Preparation of epoxy nanocomposites and studying their mechanical, thermal and morphology properties, J. Kerbala Univ. 8, 94 (2015). Google Scholar
    • 29. Y. Sun, Z. Zhang, K. Moon and C. P. Wong , Glass transition and relaxation behavior of epoxy nanocomposites, J. Polym. Sci. B, Polym. Phys. 42, 3849 (2004). CrossrefGoogle Scholar
    • 30. V. A. Rana, K. N. Shah, H. P. Vankar and C. M. Trivedi , Dielectric spectroscopic study of the binary mixtures of amino silicone oil and methyl ethyl ketone in the frequency range of 100 Hz to 2 MHz at 298.15 K temperature, J. Mol. Liq. 271, 686 (2018). CrossrefGoogle Scholar
    • 31. Keysight Technologies, Keysight E4980A/A Precision LCR Meter Keysight E4980A/AL, Data Sheet (2017). Google Scholar
    • 32. Keysight Technologies, Keysight 16451B Dielectric Test Fixture, Operation and Service Manuel (2008). Google Scholar
    • 33. Bureau of Indian Standards, IS 13360-5-11: Plastics — Methods of Testing, Part 5: Mechanical Properties, Section 11: Determination of Indentation Hardness of Plastics by Means of Durometer (Shore Hardness), Indian Standard, Petroleum, Coal, and Related Products, Plastics (1992). Google Scholar
    • 34. Bureau of Indian Standards, IS 2036: Phenolic Laminated Sheets: Specification, Indian Standard (1995). Google Scholar
    • 35. The Krishnan Group/Wilcox 132, University of Washington, Rigaku XRD-System Instruction Manual v4/19/03 (2019), http://depts.washington.edu/kkgroup/facilities/PDF/InstructionManualPDF.pdf. Google Scholar
    • 36. V. A. Rana and T. R. Pandit , Dielectric spectroscopic and molecular dynamic study of aqueous solutions of paracetamol, J. Mol. Liq. 290, 111203 (2019). CrossrefGoogle Scholar
    • 37. P. B. Macedo , The role of ionic diffusion in polarisation in vitreous ionic conductors, Phys. Chem. Glasses 13, 171 (1972). Google Scholar
    • 38. A. Kyritsis, P. Pissis and J. Grammatikakis , Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels, J. Polym. Sci. B, Polym. Phys. 33, 1737 (1995). CrossrefGoogle Scholar
    • 39. H. P. Vankar and V. A. Rana , Electrode polarization and ionic conduction relaxation in mixtures of 3-bromoanisole and 1-propanol in the frequency range of 20 Hz to 2 MHz at different temperatures, J. Mol. Liq. 254, 216 (2018). CrossrefGoogle Scholar
    • 40. E. Tuncer, I. Sauers, D. R. James, A. R. Ellis, M. P. Paranthaman, T. Aytuğ, S. Sathyamurthy, K. L. More, J. Li and A. Goyal , Electrical properties of epoxy resin based nano-composites, Nanotechnology 18, 025703 (2006). CrossrefGoogle Scholar
    • 41. D. Evans and S. J. Canfer , Advances in Cryogenic Engineering Materials, Chapter 46 (Springer, Boston, 2000), pp. 361–368. CrossrefGoogle Scholar
    • 42. Y. A. Tajima , Monitoring cure viscosity of epoxy composite, Polym. Compos. 3, 162 (1982). CrossrefGoogle Scholar
    • 43. D. Kumar, A. Singh and P. S. Tarsikka , Interrelationship between viscosity and electrical properties for edible oils, J. Food Sci. Technol. 50, 549 (2013). CrossrefGoogle Scholar
    • 44. R. J. Sengwa, S. Choudhary and P. Dhatarwal , Characterization of relaxation processes over static permittivity frequency regime and compliance of the Stokes-Einstein-Nernst relation in propylene carbonate, J. Mol. Liq. 225, 42 (2017). CrossrefGoogle Scholar
    • 45. J. Kallweit , Relationship between viscosity and direct current conductivity in PVC, J. Polym. Sci. A-1, Polym. Chem. 4, 337 (1966). CrossrefGoogle Scholar
    • 46. J. Świergiel, L. Bouteiller and J. Jadżyn , Compliance of the Stokes–Einstein model and breakdown of the Stokes–Einstein–Debye model for a urea-based supramolecular polymer of high viscosity, Soft Matter 10, 8457 (2014). CrossrefGoogle Scholar
    • 47. S. Suresh, P. Nisha, P. Saravanan, K. Jayamoorthy and S. Karthikeyan , Investigation of the thermal and dielectric behavior of epoxy nano-hybrids by using silane modified nano-ZnO, Silicon 10, 1291 (2018). CrossrefGoogle Scholar
    • 48. L. D. Zhang, H. F. Zhang, G. Z. Wang, C. M. Mo and Y. Zhang , Dielectric behaviour of nano-TiO2 bulks, Phys. Status Solidi 157, 483 (1996). CrossrefGoogle Scholar
    • 49. L. M. Levinson and H. R. Philipp , AC properties of metal-oxide varistors, J. Appl. Phys. 47, 1117 (1976). CrossrefGoogle Scholar
    • 50. J. K. Nelson and J. C. Fothergill , Internal charge behaviour of nanocomposites, Nanotechnology 15, 586 (2004). CrossrefGoogle Scholar
    • 51. K. A. Mauritz , Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers: 4: Long-range ion transport, Macromolecules 22, 4483 (1989). CrossrefGoogle Scholar
    • 52. Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi and Y. Zhang , Size dependence of dielectric constant in a single pencil-like ZnO nanowire, Nano Lett. 12, 1919 (2012). CrossrefGoogle Scholar
    • 53. A. K. Jonscher , The ‘universal’ dielectric response, Nature 267, 673 (1977). CrossrefGoogle Scholar
    • 54. A. K. Jonscher , Dielectric relaxation in solids, J. Phys. D, Appl. Phys. 32, R57 (1999). CrossrefGoogle Scholar
    • 55. Z. M. Elimat, M. S. Hamideen, K. I. Schulte, H. Wittich, A. De la Vega, M. Wichmann and S. Buschhorn , Dielectric properties of epoxy/short carbon fiber composites, J. Mater. Sci. 45, 5196 (2010). CrossrefGoogle Scholar
    • 56. B. M. Greenhoe, M. K. Hassan, J. S. Wiggins and K. A. Mauritz , Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks, J. Polym. Sci. B, Polym. Phys. 54, 1918 (2016). CrossrefGoogle Scholar
    • 57. C. Zhang, R. Mason and G. Stevens , Preparation, characterization and dielectric properties of epoxy and polyethylene nanocomposites, IEEJ Trans. Fundam. Mater. 126, 1105 (2006). CrossrefGoogle Scholar
    • 58. Y. Cao and P. C. Irwin , The electrical conduction in polyimide nanocomposites, Proc. 2003 Annu. Report Conf. Electrical Insulation and Dielectric Phenomena (2003), pp. 116–119. CrossrefGoogle Scholar
    • 59. H. Alamri and I. M. Low , Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites, Mater. Des. 42, 214 (2012). CrossrefGoogle Scholar
    • 60. M. Kozako, Y. Ohki, M. Kohtoh, S. Okabe and T. Tanaka , Preparation and various characteristics of epoxy/alumina nanocomposites, IEEJ Trans. Fundam. Mater. 126, 1121 (2006). CrossrefGoogle Scholar
    • 61. M. Rajaei, N. K. Kim, S. Bickerton and D. Bhattacharyya , A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites, Compos. B, Eng. 165, 65 (2019). CrossrefGoogle Scholar
    • 62. D. Bazrgari, F. Moztarzadeh, A. A. Sabbagh-Alvani, M. Rasoulianboroujeni, M. Tahriri and L. Tayebi , Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceram. Int. 44, 1220 (2018). CrossrefGoogle Scholar
    • 63. S. Bal , Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites, Mater. Des. 31, 2406 (2010). CrossrefGoogle Scholar
    • 64. S. Mosalman, S. Rashahmadi and R. Hasanzadeh , The effect of TiO2 nanoparticles on mechanical properties of poly methyl methacrylate nanocomposites, Int. J. Eng. Trans. B, Appl. 30, 807 (2017). Google Scholar
    • 65. T. Ngo, M. Ton-That, S. V. Hoa and K. C. Cole , Reinforcing effect of organoclay in rubbery and glassy epoxy resins, part 1: Dispersion and properties, J. Appl. Polym. Sci. 107, 1154 (2008). CrossrefGoogle Scholar
    • 66. J. Sanes, F. J. Carrión and M. D. Bermúdez , Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin, Wear 268, 1295 (2010). CrossrefGoogle Scholar
    • 67. B. P. Chang, H. M. Akil, R. B. M. Nasir, I. Bandara and S. Rajapakse , The effect of ZnO nanoparticles on the mechanical, tribological and antibacterial properties of ultra-high molecular weight polyethylene, J. Reinf. Plast. Compos. 33, 674 (2014). CrossrefGoogle Scholar
    • 68. N. A. Ai, S. I. Hussein, M. K. Jawad and I. A. Al-Ajaj , Effect of Al2O3 and SiO2 nanopartical on wear, hardness and impact behavior of epoxy composites, Chem. Mater. Res. 7, 34 (2015). Google Scholar
    • 69. A. Takari, A. R. Ghasemi, M. Hamadanian, M. Sarafrazi and A. Najafidoust , Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites, Polym. Test. 93, 106890 (2021). CrossrefGoogle Scholar
    • 70. T. A. Hassan, V. K. Rangari, F. Baker and S. Jeelani , Synthesis of hybrid SiC/SiO2 nanoparticles and their polymer nanocomposites, Int. J. Nanosci. 12, 1350008 (2013). LinkGoogle Scholar
    • 71. F. L. Deepak, G. Gundiah, M. M. Seikh, A. Govindaraj and C. N. R. Rao , Crystalline silica nanowires, J. Mater. Res. 19, 2216 (2004). CrossrefGoogle Scholar
    • 72. R. Nandanwar, P. Singh and F. Z. Haque , Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue, Chem. Sci. Int. J. 5, 1 (2015). Google Scholar
    • 73. S. Musić, N. Filipović-Vinceković and L. Sekovanić , Precipitation of amorphous SiO2 particles and their properties, Braz. J. Chem. Eng. 28, 89 (2011). CrossrefGoogle Scholar
    • 74. S.-H. Xue, H. Xie, H. Ping, Q.-C. Li, B.-L. Su and Z.-Y. Fu , Induced transformation of amorphous silica to cristobalite on bacterial surfaces, RSC Adv. 5, 71844 (2015). CrossrefGoogle Scholar
    • 75. W. Liu and Y. Zhang , Electrical characterization of TiO2/CH3NH3PbI3 heterojunction solar cells, J. Mater. Chem. A 2, 10244 (2014). CrossrefGoogle Scholar
    • 76. K. Thamaphat, P. Limsuwan and B. Ngotawornchai , Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. (Nat. Sci.) 42, 357 (2008). Google Scholar
    • 77. F. Scarpelli, T. Mastropietro, T. Poerio and N. Godbert , Titanium Dioxide: Material for a Sustainable Environment, Chapter 3 (InTechOpen, 2018), pp. 57–80. Google Scholar
    • 78. S. Phromma, T. Wutikhun, P. Kasamechonchung, T. Eksangsri and C. Sapcharoenkun , Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method, Appl. Sci. 10, 993 (2020). CrossrefGoogle Scholar
    • 79. T. Zaki, K. I. Kabel and H. Hassan , Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method, Ceram. Int. 38, 2021 (2012). CrossrefGoogle Scholar
    • 80. P. A. Prashanth, R. S. Raveendra, R. Hari Krishna, S. Ananda, N. P. Bhagya, B. M. Nagabhushana, K. Lingaraju and H. Raja Naika , Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles, J. Asian Ceram. Soc. 3, 345 (2015). CrossrefGoogle Scholar
    • 81. F. R. Feret, D. Roy and C. Boulanger , Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction, Spectrochim. Acta B, At. Spectrosc. 55, 1051 (2000). CrossrefGoogle Scholar
    • 82. T. Zaki, K. I. Kabel and H. Hassan , Using modified Pechini method to synthesize α-Al2O3 nanoparticles of high surface area, Ceram. Int. 38, 4861 (2012). CrossrefGoogle Scholar
    • 83. P. Hosseinkhani, A. M. Zand, S. Imani, M. Rezayi and Z. S. Rezaei , Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1), Int. J. Nano Dimens. 1, 279 (2011). Google Scholar
    • 84. P. Bindu and S. Thomas , Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis, J. Theor. Appl. Phys. 8, 123 (2014). CrossrefGoogle Scholar
    • 85. M. Jabeen, M. A. Iqbal, R. V. Kumar, M. Ahmed and M. T. Javed , Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing, Chin. Phys. B 23, 018504 (2013). CrossrefGoogle Scholar
    • 86. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga and A. C. Bose , X-ray peak broadening analysis in ZnO nanoparticles, Solid State Commun. 149, 1919 (2009). CrossrefGoogle Scholar
    • 87. T. Theivasanthi and M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: An insight, Preprint, arXiv:1307.1091 [physics.chem-ph] (2013). Google Scholar
    • 88. S. A. Bello, J. O. Agunsoye, J. A. Adebisi and S. B. Hassan , Effect of aluminium particles on mechanical and morphological properties of epoxy nanocomposites, APTEFF 48, 25 (2017). CrossrefGoogle Scholar
    • 89. R. Khan, M. R. Azhar, A. Anis, M. A. Alam, M. Boumaza and S. M. Al-Zahrani , Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study, J. Coat. Technol. Res. 13, 159 (2016). CrossrefGoogle Scholar
    • 90. M. A. Alam, U. A. Samad, E.-S. M. Sherif, A. M. Poulose, J. A. Mohammed, N. Alharthi and S. M. Al-Zahrani , Influence of SiO2 content and exposure periods on the anticorrosion behavior of epoxy nanocomposite coatings, Coatings 10, 118 (2020). CrossrefGoogle Scholar
    • 91. A. Kumar, K. Kumar, P. K. Ghosh and K. L. Yadav , tMWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite, Ultrason. Sonochem. 41, 37 (2018). CrossrefGoogle Scholar
    • 92. M. Eskandari, M. N. Liavali, R. Malekfar and P. Taboada , Investigation of optical properties of polycarbonate/TiO2/ZnO nanocomposite: Experimental and DFT calculations, J. Inorg. Organomet. Polym. Mater. 30, 5283 (2020). CrossrefGoogle Scholar
    • 93. A. Mostafaei and F. Nasirpouri , Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications, J. Coat. Technol. Res. 10, 679 (2013). CrossrefGoogle Scholar