COOPERATION TO REDUCE DEVELOPING COUNTRY EMISSIONS
Abstract
Without effective developing country (DC) participation in climate mitigation, it will be impossible to meet global concentration and climate change targets. However, DCS are unwilling and, in many cases, unable to bear the mitigation cost alone. They need huge transfers of resources — financial, knowledge, technology and capability — from industrialized countries (ICs). In this paper, we evaluate instruments that can induce such resource transfers, including tradable credits, mitigation funds and results-based agreements. We identify key constraints that affect the efficiency and political potential of different instruments, including two-sided private information leading to adverse selection; moral hazard and challenging negotiations; incomplete contracts leading to under-investment; and high levels of uncertainty about emissions paths and mitigation potential. We consider evidence on the poor performance of current approaches to funding DC mitigation — primarily purchasing offsets through the Clean Development Mechanism — and explore to what extent other approaches can address problems with offsets. We emphasize the wide spectrum of situations in DCS and suggest that solutions also need to be differentiated and that no one policy will suffice: some policies will be complements, while others are substitutes. We conclude by identifying research needs and proposing a straw man to broaden the range of "contracting" options considered.
References
- European Economic Review 34(3), 322 (1990). Crossref, Google Scholar
-
J. E. Aldy and R. N. Stavins (eds.) , Architectures for Agreement: Addressing Global Climate Change in the Post-Kyoto World ( Cambridge University Press , Cambridge , 2007 ) . Crossref, Google Scholar - Angelsen, A and TK Rudel (2012). Implementing REDD+ amidst a forest transition: The policy challenges. Unpublished paper . Google Scholar
- Climate Policy 7(6), 500 (2007). Crossref, Google Scholar
- Climate Policy 11(1), 752 (2011). Crossref, Google Scholar
- Oxford Economic Papers 46(1), 878 (1994). Crossref, Google Scholar
- European Economic Review 34(3), 303 (1990). Crossref, Google Scholar
- Bosi, M and J Ellis (2005). Exploring options for sectoral crediting mechanisms. OECD and International Energy Agency, Paris . Google Scholar
- Boyd, E, NE Hultman, T Roberts, E Corbera, J Ebeling, DM Liverman, K Brown, R Tippmann, J Cole, P Mann et al. (2007). The Clean Development Mechanism: An assessment of current practice and future approaches for policy. Tyndall Centre Working Paper 114, Tyndall Centre for Climate Change Research UK, Norwich . Google Scholar
- Environmental Research Letters 4(4), 44006 (2009). Crossref, Google Scholar
- Busch, J, R Lubowski, F Godoy, M Steininger, AA. Yusuf, K Austin, J Hewson, D Juhn, M Farid and F Boltz (2011). Structuring national and sub-national economic incentives to reduce emissions from deforestation in Indonesia. Working Paper in Economics and Development Studies 201105, Department of Economics, Padjadjaran University, Indonesia . Google Scholar
- Bushnell, J (2011). Adverse selection and emissions offsets. Iowa State University Working Paper No. 11004, Department of Economics, Ames . Google Scholar
- Center for Clean Air Policy (2009). Nationally appropriate mitigation actions by developing countries: Architecture and key issues, Center for Clean Air Policy, Washington, DC . Google Scholar
- Climate Policy 2(1), 35 (2002). Crossref, Google Scholar
- Datta, A and E Somanathan (2011). Climate policy and innovation in the absence of commitment. Discussion Paper 2011-45, Harvard Project on Climate Agreements, Cambridge, MA . Google Scholar
- Climate Policy 7(5), 444 (2007). Crossref, Google Scholar
- Columbia Journal of Environmental Law 36(2), 259 (2011). Google Scholar
- Energy Policy 35(1), 15 (2007). Crossref, Google Scholar
- Fell, H, D Burtraw, R Morgenstern and K Palmer (2010). Climate policy design with correlated uncertainties in offset supply and abatement cost. RFF Discussion Paper 10-01, Resources for the Future, Washington, DC . Google Scholar
- Fischer, C and AK Fox (2011). The role of trade and competitiveness measures in U.S. climate policy. Prepared for American Economic Review Papers and Proceedings 2011 . Google Scholar
- Climate Policy 9(4), 358 (2009). Crossref, Google Scholar
- Public Choice 145(2), 1 (2010). Crossref, Google Scholar
- Climate Change Economics 2(1), 9 (2011). Link, Google Scholar
- Climatic Change 104(4), 539 (2011). Crossref, Google Scholar
- Hahn, R and KR Richards (2010). Environmental offset programs: Survey and synthesis, Indiana University School of Public & Environmental Affairs Research Paper No. 2010-12-01 . Google Scholar
- Post-Kyoto International Climate Policy Implementing Architectures for Agreement, eds.
J. E. Aldy and R. N. Stavins (Cambridge University Press, 2010) pp. 649–681. Google Scholar , - Harstad, B (2009). The dynamics of climate agreements. Harvard Project on Climate Agreements. Discussion Paper 09–28 Cambridge, MA . Google Scholar
- Haya, B (2009). Measuring emissions against an alternative future: Fundamental flaws in the structure of the Kyoto Protocol's Clean Development Mechanism. Energy and Resources Group Working Paper ERG09-001, University of California, Berkeley . Google Scholar
- He, G and RK Morse (2010). Making carbon offsets work in the developing world: Lessons from the Chinese wind controversy. PESD Working Paper #90, Stanford University Program on Energy and Sustainable Development, Stanford, CA . Google Scholar
- Heindl, P and S Voigt (2011). A practical approach to offset permits in post Kyoto climate policy. Discussion Paper No. 11-043, Centre for European Economic Research, Mannheim, Germany . Google Scholar
- Hellerstein, D, N Higgins and MJ Roberts (2011). Using quotas to enhance competition in asymmetric auctions: A comparison of theoretical and experimental outcomes. Working Paper. Available at http://www4.ncsu.edu/∼mjrober2/main/Working_Papers_files/quota03_18_2011.pdf . Google Scholar
- Annual Review of Environment & Resources 32(1), 375 (2007). Crossref, Google Scholar
- American Economic Journal: Economic Policy 1(1), 106 (2009). Crossref, Google Scholar
- Forest Policy and Economics 18 , 38 ( 2012 ) . Crossref, Google Scholar
- Institutions for Environmental Aid, eds.
R. O. Keohane and M. A. Levy (MIT Press, Cambridge, MA, 1996) pp. 3–27. Google Scholar , - Post-Kyoto International Climate Policy: Implementing Architectures for Agreement , eds.
R. N. Stavins and J. E. Aldy ( Cambridge University Press , New York , 2009 ) . Google Scholar , - Kerr, S (1995a). Adverse selection and participation in international environmental agreements. In Contracts and Tradeable Permit Markets in International and Domestic Environmental Protection, Ph.D. thesis, Harvard University . Google Scholar
- Kerr, S (1995b). Alternative institutions for implementation of international environmental agreements: Ozone depletion and the Montreal Protocol. In Contracts and Tradeable Permit Markets in International and Domestic Environmental Protection, Ph.D. thesis, Harvard University . Google Scholar
- Kerr, S (2011). The economics of international policies to reduce emissions from deforestation and degradation. Unpublished paper . Google Scholar
- Review of Environmental Economics and Policy 1(1), 134 (2007). Crossref, Google Scholar
- Energy Policy 36(6), 1873 (2008). Crossref, Google Scholar
- Mason, C and A Platinga (2011). Contracting for impure public goods: Carbon offsets and additionality. NBER Working Paper No. 16963, National Bureau of Economic Research, Cambridge, MA . Google Scholar
- Proceedings of the National Academy of Sciences 107(49), 20917 (2010). Crossref, Google Scholar
- Climatic Change 84(1), 5 (2007). Crossref, Google Scholar
- Millaral-Ball, A (2012). The trouble with voluntary emissions trading: Uncertainty and adverse selection in sectoral crediting programs. Journal of Environmental Economics and Management, Online First, http://dx.doi.org/10.1016/j.jeem.2012.05.007 . Google Scholar
- Energy Policy 38(1), 533 (2010). Crossref, Google Scholar
- Journal of Political Economy 107(5), 998 (1999). Crossref, Google Scholar
- Journal of Public Economics 75(2), 273 (2000). Crossref, Google Scholar
- American Economic Review 98(1), 496 (2008). Crossref, Google Scholar
- Energy Policy 35(6), 3203 (2007). Crossref, Google Scholar
- Journal of Economic Theory 29(2), 265 (1983). Crossref, Google Scholar
- Environmental and Resource Economics 40(3), 445 (2008). Crossref, Google Scholar
- Science 326(5958), 1350 (2009). Crossref, Google Scholar
- Climatic Change 84(1), 59 (2007). Crossref, Google Scholar
-
E. Ostrom , Governing the commons: The Evolution of Institutions for Collective Action ( Cambridge University Press , Cambridge , 1990 ) . Crossref, Google Scholar - International Environmental Agreements: Politics, Law & Economics 9(1), 63 (2009). Crossref, Google Scholar
- Review of Environmental Economics and Policy 5(1), 131 (2011). Crossref, Google Scholar
- Reilly, J, M Sarofim, S Paltsev and RG Prinn (2006). The role of non-CO2 greenhouse gases in climate policy: Analysis using the MIT IGSM. Energy Journal: Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, #3, 503–520 . Google Scholar
- Journal of Development Economics 36(2), 229 (1991). Crossref, Google Scholar
- Rosendahl, KE and J Strand (2009). Carbon leakage from the Clean Development Mechanism. Discussion Papers No. 591, Statistics Norway Research Department, Oslo . Google Scholar
- Conservation Biology 21(5), 1165 (2007). Crossref, Google Scholar
- Climate Policy 8(5), 494 (2006). Crossref, Google Scholar
- Schneider, L (2007). Is the CDM fulfilling its environmental and sustainable development objectives? An evaluation of the CDM and options for improvement. Report prepared for WWF, Öko-Institut e.V., Berlin . Google Scholar
- Climate Policy 9(3), 242 (2009). Crossref, Google Scholar
- Schneider, L and M Cames (2009). A framework for a sectoral crediting mechanism in a post-2012 climate regime. Report for the Global Wind Energy Council, Öko-Institut e.V., Berlin . Google Scholar
- Journal of Economic Perspectives 7(4), 113 (1993). Crossref, Google Scholar
- The Environment and Emerging Development Issues 2, eds.
P. Dasgupta and K.-G. Mäler (Clarendon Press, Oxford, 1997) pp. 283–307. Google Scholar , - Energy Economics 33(2), 371 (2011). Crossref, Google Scholar
- Climatic Change 84(1), 75 (2007). Crossref, Google Scholar
- Sustainable Development Law & Policy 6(2), 30 (2006). Google Scholar
- UNFCCC (2008). Tool for the demonstration and assessment of additionality. Version 5.2. UNFCCC, Bonn . Google Scholar
- van Benthem, A and S Kerr (2010). Optimizing voluntary deforestation policy in the face of adverse selection and costly transfers. Motu Working Paper 10-04, Motu Economic and Public Policy Research, Wellington, NZ . Google Scholar
- van Benthem, A and S Kerr (2011). Bigger is better: Avoided deforestation offsets in the face of adverse selection. PESD Working Paper #102, Stanford University Program on Energy and Sustainable Development, Stanford, CA . Google Scholar
- Climate Policy 12(6), 645 (2012). Crossref, Google Scholar
-
D. G. Victor , Global Warming Gridlock ( Cambridge University Press , Cambridge , 2011 ) . Crossref, Google Scholar - Climate Policy 5(5), 503 (2006). Crossref, Google Scholar
- Wang-Helmreich, H, W Sterk, T Wehnert and C Arens (2011). Current developments in pilot nationally appropriate mitigation actions of developing countries (NAMAs). JIKO Policy Paper 01/2011, Wuppertal Institute, Wuppertal . Google Scholar
- UCLA Law Review 55 , 1759 ( 2008 ) . Google Scholar
- Wara, M and D Victor (2008). A realistic policy on international carbon offsets. PESD Working Paper #74, Stanford University Program on Energy and Sustainable Development, Stanford, CA . Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these New titles in Energy, Resource & Environmental Economics today. |