World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

INVESTMENT IN FLOOD PROTECTION MEASURES UNDER CLIMATE CHANGE UNCERTAINTY

    https://doi.org/10.1142/S2010007811000334Cited by:14 (Source: Crossref)

    Recent severe river flooding in Europe has triggered debates among scientists and policy-makers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change on flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impact. This model allows decision-makers to cope with the uncertain impact of climate change on the frequency and damage of river flood events and minimizes the risk of under- or over-investment. One of the innovative elements of our paper is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the effects of uncertainty on the optimal initial investment depends on the cost structure of these measures which has several important implications for flood management policy.

    We thank an anonymous reviewer, Jetske Bouma and Marjolein Mens for their useful comments on this manuscript.

    References

    • A. Becker and U. Grünewald, Science 300(5622), 1099 (2003). CrossrefGoogle Scholar
    • R. Brouwer and R. Van Ek, Ecological Economics 50(2), 1 (2004). CrossrefGoogle Scholar
    • J. H. Christensen and O. B. Christensen, Nature 421(6925), 805 (2003). CrossrefGoogle Scholar
    • K. De Bruinet al., Climatic Change 95(2), 23 (2009). CrossrefGoogle Scholar
    • De Bruin, K (2011). An economic analysis of adaptation to climate change under uncertainty. PhD dissertation, Wageningen University, The Netherlands. Available at: http://edepot.wur.nl/182256 . Google Scholar
    • J. L. De Kok and M. Grossmann, Natural Hazards 52(1), 143 (2010). CrossrefGoogle Scholar
    • R. De Loë, Canadian Geographer 44(4), 355 (2000). CrossrefGoogle Scholar
    • A. K.   Dixit and R. S.   Pindyck , Investment under Uncertainty ( Princeton University Press , Princeton, New Jersey , 1994 ) . CrossrefGoogle Scholar
    • S. Fankhauser, J. Smith and R. Tol, Ecological Economics 30(1), 67 (1999). CrossrefGoogle Scholar
    • M. Helmset al., Journal of Hydrology 267(2), 94 (2002). CrossrefGoogle Scholar
    • D. A. Hennessy and G. Moschini, American Journal of Agricultural Economics 88(2), 308 (2006). CrossrefGoogle Scholar
    • IPCC (2007a). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press . Google Scholar
    • IPCC (2007b). Climate Change 2007: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press . Google Scholar
    • Z. W. Kundzewicz, Water International 27(1), 3 (2002). CrossrefGoogle Scholar
    • Z. W.   Kundzewicz , Extreme Weather Events and Public Health Responses , eds. W.   Kirch , B.   Menne and R.   Bertollini ( Springer , Berlin , 2005 ) . Google Scholar
    • Z. W. Kundzewicz, Boreal Environment Research 14(1), 193 (2009). Google Scholar
    • Z. W. Kundzewiczet al., Natural Hazards 36(2), 165 (2005). CrossrefGoogle Scholar
    • Z. W. Kundzewicz, Y. Hirabayashi and S. Kanae, Water Resources Management 24(11), 2633 (2010). CrossrefGoogle Scholar
    • P. C. D. Millyet al., Nature 415(6871), 514 (2002). CrossrefGoogle Scholar
    • M. Mudelseeet al., Nature 425(6954), 166 (2003). CrossrefGoogle Scholar
    • E. Penning-Rowsell, C. Johnson and S. Tunstall, Global Environmental Change 16(4), 323 (2006). CrossrefGoogle Scholar
    • T. Petrow and B. Merz, Journal of Hydrology 371(4), 129 (2009). CrossrefGoogle Scholar
    • T. Petrowet al., Environmental Management 38(5), 717 (2006). CrossrefGoogle Scholar
    • E. A. Rosenberget al., Climatic Change 102(2), 319 (2010). CrossrefGoogle Scholar
    • W. Silva, J. P. M. Dijkman and D. P. Loucks, International Journal of River Basin Management 2(2), 101 (2004). CrossrefGoogle Scholar
    • A. H. Te Lindeet al., Hydrology and Earth System Sciences 12(3), 943 (2008). CrossrefGoogle Scholar
    • R. S. J. Tolet al., Risk Analysis 23(3), 575 (2003). CrossrefGoogle Scholar
    • E. Towleret al., Water Resources Research 46, W11504 (2010). Google Scholar
    • S. Tunstall, S. McCarthy and H. Faulkner, Journal of Flood Risk Management 2(3), 159 (2009). CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these New titles in Energy, Resource & Environmental Economics today.
    Featuring authors from Princeton, Columbia University, Imperial College Business School and many more!