World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue: Selected Papers from AsiaSim and ICSC 2012; Guest Editors: Lin Zhang and Xiao Song (Beihang University, China) — Research PapersNo Access

STRUCTURAL ANALYSIS OF HIGH-INDEX DAE FOR PROCESS SIMULATION

    https://doi.org/10.1142/S1793962313420087Cited by:2 (Source: Crossref)

    This paper deals with the structural analysis problem of dynamic lumped process high-index differential algebraic equations (DAE) models. The existing graph theoretical method depends on the change in the relative position of underspecified and overspecified subgraphs and has an effect to the value of the differential index for complex models. In this paper, we consider two methods for index reduction of such models by differentiation: Pryce's method and the symbolic differential elimination algorithm rifsimp. They can remedy the above drawbacks. Discussion and comparison of these methods are given via a class of fundamental process simulation examples. In particular, the efficiency of Pryce's method is illustrated as a function of the number of tanks in process design. Moreover, a range of nontrivial problems are demonstrated by the symbolic differential elimination algorithm and fast prolongation.

    References

    • R. Riaza and C. Tischendorf, Dyn. Syst. 22(2), 107 (2007). Crossref, Web of ScienceGoogle Scholar
    • R.   Riaza , Nonlinear Anal. Real World Appl.   12 , 3674 ( 2011 ) . Crossref, Web of ScienceGoogle Scholar
    • P.   Rabier and W. C.   Rheinboldt , Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint ( SIAM , Philadelphia , 2000 ) . CrossrefGoogle Scholar
    • T. Pulecchi, F. Casella and M. Lovera, Simulat. Model. Pract. Theor. 18(1), 63 (2010). Crossref, Web of ScienceGoogle Scholar
    • K. M.   Hangos and I. T.   Cameron , Process Modeling and Model Analysis ( Academic Press , London , 2001 ) . Google Scholar
    • J. D.   Pryce , Numer. Algorithms   1 , 195 ( 1998 ) . Crossref, Web of ScienceGoogle Scholar
    • J. D. Pryce, BIT Numer. Math. 41(2), 364 (2001). Crossref, Web of ScienceGoogle Scholar
    • C. Pantelides, SIAM J. Sci. Stat. Comput. 9(2), 213 (1988). Crossref, Web of ScienceGoogle Scholar
    • R. P. Soares and A. R. Secchi, Direct initialisation and solution of high-index DAE systems, European Symp. Computer Aided Process Engineering 15 (2005) pp. 157–162. Google Scholar
    • P.   Fritzson , Principles of Object-Oriented Modeling and Simulation with Modelica 2.1 ( Wiley-IEEE Press , Piscataway , 2004 ) . Google Scholar
    • R. P. Soares and A. R. Secchi, EMSO: A new environment for modeling, simulation and optimization, European Symp. Computer Aided Process Engineering 13 (2003) pp. 947–952. Google Scholar
    • R. M.   Corless and S.   Ilie , BIT Numer. Math.   48 , 29 ( 2008 ) . Crossref, Web of ScienceGoogle Scholar
    • W. Y. Wu and G. Reid, Symbolic-numeric computation of implicit riquier bases for PDE, Proc. Int. Symp. Symbolic and Algebraic Computation (2007) pp. 377–385. Google Scholar
    • M.   Takamatsu and S.   Iwata , Linear Algebra Appl.   429 , 2268 ( 2008 ) . Crossref, Web of ScienceGoogle Scholar
    • Mani N., Fast numeric geometric techniques for computer generated DAE models, M.Sc. Thesis, University of Western Ontario, 2010 . Google Scholar
    • A. Leitold and M. Gerzson, Hungarian J. Ind. Chem. Veszprém 37(2), 145 (2009). Google Scholar
    • A.   Leitold and M.   Gerzson , Comput. Aided Chem. Eng.   28 , 385 ( 2010 ) . CrossrefGoogle Scholar
    • H. W.   Kuhn , Nav. Res. Logist. Q.   2 , 83 ( 1955 ) . CrossrefGoogle Scholar
    • G. Reid, A. D. Wittkopf and A. Boulton, Eur. J. App. Math. 7(6), 635 (1996). CrossrefGoogle Scholar
    • G. Reidet al., Symbolic-numberic completion of differential systems by homotopy continuation, Proc. Int. Symp. Symbolic and Algebraic Computation (2005) pp. 269–276. Google Scholar
    • F. Soltaniana, M. Dehghanb and S. M. Karbassia, Int. J. Comput. Math. 87(9), 1950 (2010). Crossref, Web of ScienceGoogle Scholar
    • M. A. Jafari and A. Aminataei, Ain Shams Eng. J. 2(2), 119 (2011). CrossrefGoogle Scholar
    • S. L.   Campbell , Numer. Math.   65 , 77 ( 1993 ) . Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our handbook collection in computer science!