World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Bacterial phylogeny in the Cayley graph

    https://doi.org/10.1142/S1793830919500599Cited by:4 (Source: Crossref)

    Many models of genome rearrangement involve operations that are self-inverse, and hence generate a group acting on the space of genomes. This gives a correspondence between genome arrangements and the elements of a group, and consequently, between evolutionary paths and walks on the Cayley graph. Many common methods for phylogenetic reconstruction rely on calculating the minimal distance between two genomes; this omits much of the other information available from the Cayley graph. In this paper, we begin an exploration of some of this additional information, in particular describing the phylogeny as a Steiner tree within the Cayley graph, and exploring the “interval” between two genomes. While motivated by problems in systematic biology, many of these ideas are of independent group-theoretic interest.

    AMSC: 05C12, 06A07, 92D15

    References

    • 1. D. A. Bader, B. M. E. Moret and M. Yan , A linear-time algorithm for computing inversion distance between signed permutations with an experimental study, J. Comput. Biol. 8(5) (2001) 483–491. CrossrefGoogle Scholar
    • 2. V. Bafna and P. Pevzner , Sorting permutations by transpositions, in Proc. Sixth Annual ACM-SIAM Symp. Discrete Algorithms (Society for Industrial and Applied Mathematics, 1995), pp. 614–623. Google Scholar
    • 3. S. Bhatia, P. Feijão and A. R. Francis , Position and content paradigms in genome rearrangements: The wild and crazy world of permutations in genomics, Bull. Math. Biol. 80(12) (2018) 3227–3246. CrossrefGoogle Scholar
    • 4. A. Björner and F. Brenti , Combinatorics of Coxeter Groups (Graduate Texts in Mathematics, Springer, 2005). Google Scholar
    • 5. G. Bourque and P. A. Pevzner , Genome-scale evolution: Reconstructing gene orders in the ancestral species, Genome Res. 12(1) (2002) 26–36. Google Scholar
    • 6. M. Braga , Baobabluna: The solution space of sorting by reversals, Bioinformatics 25(14) (2009) 1833–1835. CrossrefGoogle Scholar
    • 7. M. Braga, M. Sagot, C. Scornavacca and E. Tannier , The solution space of sorting by reversals, in Int. Symp. Bioinformatics Research and Applications (Springer, 2007), pp. 293–304. CrossrefGoogle Scholar
    • 8. A. Caprara , On the practical solution of the reversal median problem, in Int. Workshop on Algorithms in Bioinformatics (Springer, 2001), pp. 238–251. CrossrefGoogle Scholar
    • 9. A. Caprara , The reversal median problem, INFORMS J. Comput. 15(1) (2003) 93. CrossrefGoogle Scholar
    • 10. N. Caspard, B. Leclerc and B. Monjardet , Finite ordered sets: Concepts, results and uses, in Encyclopedia of Mathematics and its Applications, Vol. 144 (Cambridge University Press, 2012). CrossrefGoogle Scholar
    • 11. L. F. I. Cunha, P. Feijão, V. F. dos Santos, L. A. B. Kowada and C. M. H. de Figueiredo , On the computational complexity of closest genome problems, Discrete Appl. Math. (2019) (in press). CrossrefGoogle Scholar
    • 12. A. C. E. Darling, B. Mau, F. R. Blattner and N. T. Perna , Mauve: Multiple alignment of conserved genomic sequence with rearrangements, Genome Res. 14(7) (2004) 1394–1403. CrossrefGoogle Scholar
    • 13. B. A. Davey and H. A. Priestley , Introduction to Lattices and Order, 2nd edn. (Cambridge University Press, 2002). CrossrefGoogle Scholar
    • 14. A. Egri-Nagy, A. R. Francis and V. Gebhardt , Bacterial genomics and computational group theory: The BioGAP package for GAP, in Mathematical Software — ICMS 2014, Lecture Notes in Computer Science, eds. H. Hong and C. Yap , Vol. 8592 (Springer Berlin Heidelberg, 2014), pp. 67–74, https://github.com/egri-nagy/biogap. CrossrefGoogle Scholar
    • 15. A. Egri-Nagy, V. Gebhardt, M. M. Tanaka and A. R. Francis , Group-theoretic models of the inversion process in bacterial genomes, J. Math. Biol. 69(1) (2014) 243–265. CrossrefGoogle Scholar
    • 16. G. Fertin , Combinatorics of Genome Rearrangements (MIT Press, 2009). CrossrefGoogle Scholar
    • 17. N. Gao, N. Yang and J. Tang , Ancestral genome inference using a genetic algorithm approach, PloS One 8(5) (2013) e62156. CrossrefGoogle Scholar
    • 18. GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.7.8 (2015), https://www.gap-system.org. Google Scholar
    • 19. O. Gascuel , Mathematics of Evolution and Phylogeny (Oxford University Press, 2005). CrossrefGoogle Scholar
    • 20. S. Hannenhalli and P. A. Pevzner , Transforming men into mice (polynomial algorithm for genomic distance problem), in Proc. 36th Annual Symp. Foundations of Computer Science, 1995 (IEEE, Milwaukee, USA, 1995), pp. 581–592. CrossrefGoogle Scholar
    • 21. J. Kececioglu and D. Sankoff , Exact and approximation algorithms for the inversion distance between two permutations, Algorithmica 13(1–2) (1995) 180–210. CrossrefGoogle Scholar
    • 22. B. M. E. Moret, L.-S. Wang, T. Warnow and S. K. Wyman , New approaches for reconstructing phylogenies from gene order data, Bioinformatics, 17(suppl 1) (2001) S165–S173. CrossrefGoogle Scholar
    • 23. V. Moulton and M. Steel , The butterfly effect in Cayley graphs with applications to genomics, J. Math. Biol. 65(6–7) (2012) 1267–1284. CrossrefGoogle Scholar
    • 24. D. Sankoff , Edit distance for genome comparison based on non-local operations, in Annual Symp. Combinatorial Pattern Matching (Springer, 1992), pp. 121–135. CrossrefGoogle Scholar
    • 25. D. Sankoff, G. Sundaram and J. Kececioglu , Steiner points in the space of genome rearrangements, Int. J. Found. Comput. Sci. 7(1) (1996) 1–9. LinkGoogle Scholar
    • 26. J. G. Sumner, P. D. Jarvis and A. R. Francis , A representation-theoretic approach to the calculation of evolutionary distance in bacteria, J. Phys. A Math. Theor. 50(33) (2017) 335601. CrossrefGoogle Scholar
    • 27. K. M. Swenson, V. Rajan, Y. Lin and B. Moret , Sorting signed permutations by inversions in O(nlogn) time, in Annual Int. Conf. Research in Computational Molecular Biology (Springer, 2009), pp. 386–399. CrossrefGoogle Scholar
    • 28. V. Terauds and J. Sumner , Maximum likelihood estimates of rearrangement distance: Implementing a representation-theoretic approach, Bull. Math. Biol. 81(2) (2019) 535–567. CrossrefGoogle Scholar
    • 29. G. A. Watterson, W. J. Ewens, T. E. Hall and A. Morgan , The chromosome inversion problem, J. Theor. Biol. 99(1) (1982) 1–7. CrossrefGoogle Scholar
    • 30. J. P. P. Zanetti, P. Biller and J. Meidanis , Median approximations for genomes modeled as matrices, Bull. Math. Biol. 78(4) (2016) 786–814. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!