World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SUPER-BOOLEAN FUNCTIONS AND FREE BOOLEAN QUASILATTICES

    https://doi.org/10.1142/S1793830914500244Cited by:5 (Source: Crossref)

    A Boolean quasilattice is an algebra with hyperidentities of the variety of Boolean algebras. In this paper, we give a functional representation of the free n-generated Boolean quasilattice with two binary, one unary and two nullary operations. Namely, we define the concept of super-Boolean function and prove that the free Boolean quasilattice with two binary, one unary and two nullary operations on n free generators is isomorphic to the Boolean quasilattice of super-Boolean functions of n variables.

    References

    • A. D. Anosov, Discrete Math. Appl. 17, 331 (2007), DOI: 10.1515/dma.2007.028. Google Scholar
    • V. D. Belousov, Systems of quasigroups with generalized identities, Uspekhi Mat. Nauk 20 (1965) 75–144 (in Russian); Russian Math. Surveys 20 (1965) 73–143 . Google Scholar
    • G.   Birkhoff , Lattice Theory , 3rd edn. ( American Mathematical Society , Providence, RI , 1967 ) . Google Scholar
    • A.   Church , Introduction to Mathematical Logic   1 ( Princeton University Press , Princeton , 1956 ) . Google Scholar
    • Y.   Crama and P. L.   Hammer , Boolean Functions: Theory, Algorithms, and Applications ( Cambridge University Press , New York , 2011 ) . CrossrefGoogle Scholar
    • K.   Denecke and Sh. L.   Wismath , Hyperidentities and Clones ( Gordon and Breach Science Publishers , 2000 ) . CrossrefGoogle Scholar
    • G.   Grätzer , Lattice Theory: Foundation ( Springer , Basel AG , 2011 ) . CrossrefGoogle Scholar
    • M.   Hazewinkel (ed.) , Handbook of Algebra   2 ( North-Holland , 2000 ) . Google Scholar
    • J.   Koppitz and K.   Denecke , M-Solid Varieties of Algebras ( Springer , 2006 ) . Google Scholar
    • A. I.   Maltsev , Algebraic Systems , Grundlehren der mathematishen Wissenschaften   192 ( Springer-Verlag , New-York , 1973 ) . Google Scholar
    • V. Melkonian, Discrete Math. Alg. Appl. 3(1), 101 (2011), DOI: 10.1142/S179383091100105X. LinkGoogle Scholar
    • Yu. M.   Movsisyan , Introduction to the Theory of Algebras with Hyperidentities ( Yerevan State University Press , Yerevan , 1986 ) . Google Scholar
    • Yu. M.   Movsisyan , Hyperidentities and Hypervarieties in Algebras ( Yerevan State University Press , Yerevan , 1990 ) . Google Scholar
    • Yu. M. Movsisyan, Hyperidentities of Boolean algebras, Izv. Ross. Akad. Nauk Ser. Mat. 56(3) (1992) 654–672 (in Russian); Russ. Acad. Sci. Izv. Math. 40 (1993) 607–622 . Google Scholar
    • Yu. M. Movsisyan, Algebras with hyperidentities of the variety of Boolean algebras, Izv. Ross. Akad. Nauk Ser. Mat. 60(6) (1996) 127–168 (in Russian); Russ. Acad. Sci. Izv. Math. 60 (1996) 1219–1260 . Google Scholar
    • Yu. M. Movsisyan, Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk 53(1)(319) (1998) 61–114 (in Russian); Russian Math. Surveys 53(1) (1998) 57–108 . Google Scholar
    • Yu. Movsisyan, Sci. Math. Jap. 54, 595 (2001). Google Scholar
    • Yu. M. Movsisyan, Int. J. Algebra Comput. 19, 97 (2009), DOI: 10.1142/S0218196709004993. LinkGoogle Scholar
    • Yu. M. Movsisyan, Proc. Steclov. Inst. Math. 274, 174 (2011), DOI: 10.1134/S0081543811060113. CrossrefGoogle Scholar
    • Yu. M. Movsisyan and V. A. Aslanyan, Log. J. IGPL 20, 1153 (2012), DOI: 10.1093/jigpal/jzr053. CrossrefGoogle Scholar
    • Yu. M. Movsisyan and V. A. Aslanyan, A functional representation of free De Morgan algebras, Proc. Yerevan State University, Physical and Mathematical Sciences3 (Yerevan State University Press, 2012) pp. 14–16. Google Scholar
    • Yu. M. Movsisyan and A. G. Barkhudaryan, On the hypervariety of QB-algebras, Proc. Yerevan State University, Physical and Mathematical Sciences2 (Yerevan State University Press, 1996) pp. 16–24. Google Scholar
    • B. I.   Plotkin , Universal Algebra, Algebraic Logic, and Databases ( Kluwer Academic Publisher , 1994 ) . CrossrefGoogle Scholar