World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

CONSTRUCTION OF SELF-DUAL RADICAL 2-CODES OF GIVEN DISTANCE

    https://doi.org/10.1142/S1793830912500528Cited by:0 (Source: Crossref)

    We prove that for arbitrary n ∈ ℕ and and for a field K of characteristic 2 there exists an abelian group G of order 2n such that one of the powers of the radical of the group algebra K[G] is a (2n, 2n-1, 2d)-self-dual code. These codes are constructed for abelian groups G with decomposition

    where a1 ≥ 3 and si ≥ 0(1 ≤ i ≤ 3).

    AMSC: 94B05, 94B60

    References

    • S. D. Berman, Kibernetika 3(1), 31 (1967). Google Scholar
    • P. Charpin, C.R. Acad. Sci. Paris 295(1), 313 (1982). Google Scholar
    • V. Drensky and P. Lakatos, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science 357, ed. T. Mora (Springer-Verlag, 1989) pp. 181–188. CrossrefGoogle Scholar
    • S. A.   Jennings , Trans. Amer. Math. Soc.   50 , 175 ( 1941 ) . Google Scholar
    • P. Landrock and O. Manz, Designs, Codes and Cryptog. 2(3), 273 (1992). CrossrefGoogle Scholar