A BOUND ON THE BONDAGE NUMBER OF TOROIDAL GRAPHS
Abstract
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than γ(G), where γ(G) denote the domination number of G. Let G be a toroidal graph with maximum degree Δ(G). In this paper, we show that b(G) ≤ 9. Moveover, if Δ(G) ≠ 6, then b(G) ≤ 8.
This work is supported by research grants NSFC (11001055, 60672030) and NSFFP (2010J05004, 2011J06001).
References
- Discrete Math. 47, 153 (1983). Crossref, Google Scholar
- Discrete Math. 306, 820 (2006). Crossref, Google Scholar
- , Domination in Graphs: Advanced Topics , eds.
T. W. Haynes , S. T. Hedetniemi and P. J. Slater ( Marcel Dekker , New York , 1998 ) . Google Scholar - Discrete Math. 86, 47 (1990). Crossref, Google Scholar
- Discrete Math. 260, 57 (2003). Crossref, Google Scholar
- Aequationes Math. 4, 322 (1970). Crossref, Google Scholar
- Discrete Math. 128, 173 (1994). Crossref, Google Scholar
- Discrete Math. 222, 191 (2000). Crossref, Google Scholar
-
B. Mohar and C. Thomassen , Graphs on Surfaces ( The Johns Hopkins Univ. Press , 2001 ) . Google Scholar - Discrete Math. 122, 393 (1993). Crossref, Google Scholar
- Australas. J. Combin. 12, 27 (1995). Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Be inspired by these NEW Mathematics books for inspirations & latest information in your research area! |


