World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

MOLECULAR ORIENTATION AND ENERGY LEVEL ALIGNMENT AT THE CuPc/SAMs INTERFACE

    https://doi.org/10.1142/S1793617908000094Cited by:0 (Source: Crossref)

    This article highlights recent progress in the use of functionalized self-assembled monolayers for organic electronics, with particular emphasis on the investigation of the CuPc-SAMs interface properties, particularly the energy level alignment and molecular orientation. Synchrotron-based high-resolution photoemission spectroscopy (PES) and near-edge X-ray absorption fine structure measurements (NEXAFS) are used to address these issues. It is found that the energy level alignment at the CuPc-SAMs interface depends on the chain length of SAMs. Fermi level pinning occurs at the interface of CuPc with short chain SAMs of 4-trifluoromethyl-benzenethiol (CF3-SAM) and 4-methyl-benzenethiol (CH3-SAM), whereas the vacuum level aligns at the interface of CuPc with long chain SAMs including 1-(p-thiophenyl)-4-phenylbenzene (BBB), 4-(p-thiophenyl)-2, 2', 5, 5'-tetramethoxy-biphenyl (BOO), 1-(p-thiophenyl)-4-(2', 5'-dimethoxyphenyl)-tetrafluorobenzene (BFO) and 4-pentafluorophenyl-1-(p-thiophenyl)-2, 5-dimethoxybenzene (BOF). A significant reduction of the hole injection barrier (Δh) by up to 0.75 eV was observed after deposition of 5 nm CuPc on BOF/Au(111) as compared to the CuPc/Au(111) (Δh = 0.9 eV). Angular-dependent NEXAFS measurements reveal that CuPc molecules adopt a standing up configuration on all SAMs. This suggests that the interface charge transfer has negligible effect on the molecular orientation of CuPc on various SAMs.

    References

    • L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, Nature 434, 194 (2005); P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli and R. H. Friend, Nature 404, 481 (2000) . Google Scholar
    • F. Yang, M. Shtein and S. R. Forrest, Nat. Mater. 4, 37 (2005); J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater. 17, 66 (2005) . Google Scholar
    • M. A. Muccini, Nat. Mater. 5, 605 (2006); F. Dinelli, R. Capelli, M. A. Loi, M. Murgia, M. Muccini, A. Facchetti and T. J. Marks, Adv. Mater. 18, 1416 (2006); M. A. Loi, E. Da Como, F. Dinelli, M. Murgia, R. Zamboni, F. Biscarini and M. Muccini, Nat. Mater. 4, 81 (2005) . Google Scholar
    • H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin and A. Dodabalapur, Nature 404, 478 (2000); B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, Nature 403, 521 (2000); H. E. Katz, J. Johnson, A. J. Lovinger and W. J. Li, J. Am. Chem. Soc. 122, 7787 (2000); J. G. Laquindanum, H. E. Katz and A. J. Lovinger, J. Am. Chem. Soc. 120, 664 (1998) . Google Scholar
    • M. H. Yoon, C. Kim, A. Facchetti and T. J. Marks, J. Am. Chem. Soc. 128, 12851 (2006); A. Facchetti, M. Mushrush, M. H. Yoon, G. R. Hutchison, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc. 126, 13859 (2004); A. Facchetti, M. Mushrush, H. E. Katz and T. J. Marks, Adv. Mater. 15, 33 (2003); A. Facchetti, J. Letizia, M. H. Yoon, M. Mushrush, H. E. Katz and T. J. Marks, Chem. Mater. 16, 4715 (2004); G. R. Dholakia, M. Meyyappan, A. Facchetti and T. J. Marks, Nano Lett. 6, 2447 (2006) . Google Scholar
    • H. Peisert, T. Schwieger, J. M. Auerhammer, M. Knupfer, M. S. Golden, J. Fink, P. R. Bressler and M. Mast, J. Appl. Phys. 90, 466 (2001); K. S. Lee, T. J. Smith, K. C. Dickey, J. E. Yoo, K. J. Stevenson and Y.-L. Loo, Adv. Funct. Mater. 16, 2409 (2006); K. Ihm, B. Kim, T.-H. Kang, K.-J. Kim, M. H. Joo, T. H. Kim, S. S. Yoon and S. Chung, Appl. Phys. Lett. 89, 033504 (2006) . Google Scholar
    • H. Ishiiet al., Adv. Mater. 11, 605 (1999). CrossrefGoogle Scholar
    • M. Knupfer and H. Peisert, Phys. Stat. Sol. (a) 201, 1055 (2004); H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsh and J. Fink, Appl. Phys. Lett. 83, 3930 (2003); H. Peisert, M. Knupfer and J. Fink, Appl. Phys. Lett. 81, 2400 (2002) . Google Scholar
    • N. Koch and A. Vollmer, Appl. Phys. Lett. 89, 162107 (2006); N. Koch, S. Duhm, J. P. Rabe, A. Vollmer and R. L. Johnson, Phys. Rev. Lett. 95, 237601 (2005); N. Koch, S. Duhm, J. P. Rabe, S. Rentenberger, R. L. Johnson, J. Klankermayer and F. Schreiber, Appl. Phys. Lett. 87, 101905 (2005); N. Koch, A. Elschner, J. P. Rabe and R. L. Johnson, Adv. Mater. 17, 330 (2005); N. Koch, A. Elschner, J. Schwartz and A. Kahn, Appl. Phys. Lett. 82, 2281 (2003); N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson and A. Elschner, Appl. Phys. Lett. 82, 70 (2003) . Google Scholar
    • C. Tengstedtet al., Appl. Phys. Lett. 88, 053502 (2006), DOI: 10.1063/1.2168515. CrossrefGoogle Scholar
    • H. Vazquez, W. Gao, F. Flores and A. Kahn, Phys. Rev. B 71, 041306 (2005); S. Kera, Y. Yabuuchi, H. Yamane, H. Setoyama, K. K. Okudaira, A. Kahn and N. Ueno, Phys. Rev. B 70, 085304 (2004); A. Kahn, N. Koch and W. Y. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003) . Google Scholar
    • E. L. Bruner, N. Koch, A. R. Span, S. L. Bernasek, A. Kahn and J. Schwartz, J. Am. Chem. Soc. 124, 3192 (2002); J. Guo, N. Koch, J. Schwartz and S. L. Bernasek, J. Phys. Chem. B 109, 3966 (2005); M. McDowell, I. G. Hill, J. E. McDermott, S. L. Bernasek and J. Schwartz, Appl. Phys. Lett. 88, 073505 (2006); H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern and T. J. Marks, Adv. Mater. 15, 835 (2003) . Google Scholar
    • S. Khodabakhsh, B. M. Sanderson, J. Nelson and T. S. Jones, Adv. Funct. Mater. 16, 95 (2006); S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater. 14, 1205 (2004) . Google Scholar
    • E. L. Hansonet al., J. Am. Chem. Soc. 127, 10058 (2005), DOI: 10.1021/ja050481s. CrossrefGoogle Scholar
    • H. Klauk, U. Zschieschang and J. Pflaum, Nature 445, 745 (2007), DOI: 10.1038/nature05533. CrossrefGoogle Scholar
    • W. Chen, C. Huang, X. Y. Gao, L. Wang, C. G. Zhen, D. Qi, S. Chen, H. L. Zhang, K. P. Loh, Z. K. Chen and A. T. S. Wee, J. Phys. Chem. B 110, 26075 (2006); W. Chen, X. Y. Gao, D. C. Qi, S. Chen, Z. K. Chen and A. T. S. Wee, Adv. Funct. Mater. 17, 1339 (2007) . Google Scholar
    • W. Chenet al., Surf. Sci. 596, 176 (2005). CrossrefGoogle Scholar
    • W. Chenet al., J. Am. Chem. Soc. 128, 935 (2006), DOI: 10.1021/ja056324a. CrossrefGoogle Scholar
    • W. Chenet al., Appl. Phys. Lett. 88, 184102 (2006), DOI: 10.1063/1.2201615. CrossrefGoogle Scholar
    • M. P. Seah and W. A. Dench, Surf. Interf. Anal. 1, 2 (1979), DOI: 10.1002/sia.740010103. CrossrefGoogle Scholar
    • V. de Renzi, R. Rousseau, D. Marchetto, R. Biagi, S. Scandolo and U. del Pennino, Phys. Rev. Lett. 95, 046804 (2005); P. S. Bagus, V. Staemmler and C. W"oll, Phys. Rev. Lett. 89, 096104 (2002); J. L. F. Da Silva, C. Stampfl and M. Scheffler, Phys. Rev. Lett. 90, 066104 (2003); G. Witte, S. Lukas, P. S. Bagus and C. W"oll, Appl. Phys. Lett. 87, 263502 (2005); H. Ahn, M. Zharnikov and J. E. Whitten, Chem. Phys. Lett. 428, 283 (2006) . Google Scholar
    • K. M. Lauet al., Appl. Phys. Lett. 88, 173513 (2006), DOI: 10.1063/1.2198484. CrossrefGoogle Scholar
    • J.   Stöhr , NEXAFS Spectroscopy ( Springer-Verlag , Berlin, New York , 1992 ) . CrossrefGoogle Scholar
    • M. P. de Jonget al., Phys. Rev. B 72, 035448 (2005), DOI: 10.1103/PhysRevB.72.035448. CrossrefGoogle Scholar
    • S. E. Fritzet al., J. Am. Chem. Soc. 126, 4084 (2004), DOI: 10.1021/ja049726b. CrossrefGoogle Scholar