World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Titanium and iron-modified delaminated muscovite as photocatalyst for enhanced degradation of Tetrabromobisphenol A by visible light

    https://doi.org/10.1142/S179360472051008XCited by:10 (Source: Crossref)

    A new heterostructured titanium–iron-based material dispersed in alkaline muscovite (Ti–Fe–Mus) was synthesized by a typical impregnation process, and characterized by X-ray diffraction, adsorption/desorption of liquefied nitrogen and thermogravimetric/differential thermal analysis. This characterization suggests that the Ti–Fe–Mus system does not present sufficiently ordered silicate layers, but has a delaminated structure. The specific surface area and porosity have been significantly improved compared to the virgin muscovite, and the outer surface appears to be the dominant active surface. In particular, the Ti–Fe–Mus system was examined as a photocatalyst for the degradation of Tetrabromobisphenol A (TBBPA) selected as a model compound by visible light exposure. The Ti–Fe–Mus system showed excellent photocatalytic activity for TBBPA degradation and optimum catalyst concentration was found at 0.4g L1. More than 60% by weight of parent TBBPA with an initial concentration of 300ppm were eliminated after 120min at pH=3. Acid conditions have resulted in a faster elimination compared to alkaline and neutral conditions. Based on these results, it has been shown that titanium and iron modified delaminated muscovite (Ti–Fe–Mus) have strong potential for application as a powerful photocatalyst for the elimination of persistent organic pollutants present in the environment.

    References

    • 1. C. Yang et al., RSC Adv. 7, 23699 (2017). ISIGoogle Scholar
    • 2. Q. Jin et al., Funct. Mater. Lett. 10, 1750061 (2017). Link, ISIGoogle Scholar
    • 3. L. Zhao et al., Funct. Mater. Lett. 12, 1950045 (2019). Link, ISIGoogle Scholar
    • 4. M. T. Amin and A. A. Alazba, Mod. Phys. Lett. B 31, 1750264 (2017). Link, ISIGoogle Scholar
    • 5. D. Ariyanti, M. Maillot and W. Gao, Int. J. Mod. Phys. B 31, 1744095 (2017). Link, ISIGoogle Scholar
    • 6. V. Kavitha, P. S. Ramesh and D. Geetha, Int. J. Nanosci. 15, 1660002 (2016). LinkGoogle Scholar
    • 7. Y. Mahmiani, A. M. Sevim and A. Gül, J. Porphyr. Phthalocyanines 20, 1190 (2016). Link, ISIGoogle Scholar
    • 8. R. Djellabia et al., J. Photochem. Photobiol. A Chem. 295, 57 (2014). ISIGoogle Scholar
    • 9. D. Chen, H. Zhu and X. Wang, Appl. Surf. Sci. 319, 158 (2014). ISIGoogle Scholar
    • 10. Y. Zhang and H. Yang, Funct. Mater. Lett. 6, 1350013 (2013). Link, ISIGoogle Scholar
    • 11. N. K. Daud and B. H. Hameed, J. Hazard. Mater. 176, 938 (2010). ISIGoogle Scholar
    • 12. E. Dvininova et al., J. Hazard. Mater. 167, 1050 (2009). ISIGoogle Scholar
    • 13. J. Herney-Ramirez, M. A. Vicente and L. M. Madeira, Appl. Catal. B Environ. 98, 10 (2010). ISIGoogle Scholar
    • 14. J. G. Carriazo et al., Appl. Clay Sci. 50, 401 (2010). ISIGoogle Scholar
    • 15. J. G. Carriazo, A. Ensuncho-Muñoz and O. Almanza, Rev. Mex. Ing. Quim. 13, 473 (2014). Google Scholar
    • 16. G. A. Knudsen et al., Toxicol. Appl. Pharmacol. 289, 323 (2015). ISIGoogle Scholar
    • 17. C. A. De Wit, D. Herzke and K. Vorkamp, Sci. Total Environ. 408, 2885 (2010). ISIGoogle Scholar
    • 18. J. R. Nyholm, C. Lundberg and P. L. Andersson, Environ. Pollut. 158, 2235 (2010). ISIGoogle Scholar
    • 19. Q. Li et al., Res. Chem. Intermediat. 45, 757 (2019). ISIGoogle Scholar
    • 20. Y. Guo et al., J. Hazard. Mater. 241–242, 301 (2012). ISIGoogle Scholar
    • 21. K. Bentaleb et al., J. Taiwan Inst. Chem. Eng. 80, 578 (2017). ISIGoogle Scholar
    • 22. S. J. Macnaughton et al., Modelling the leaching behaviour of an uranium ore, Uranium 2000, International symposium on the process metallurgy of uranium (Saskatoon, Saskatchewan, Canada, 2000), pp. 413–428. Google Scholar
    • 23. G. Horváth and K. Kawazoe, J. Chem. Eng. Jpn. 16, 470 (1983). ISIGoogle Scholar
    • 24. B. Faust, Modern Chemical Techniques: An Essential Reference for Students and Teachers, Ultraviolet/visible Spectroscopy (RSC Publishing, 1997). Google Scholar
    • 25. J. P. Chen, M. C. Hausladen and R. T. Yang, J. Catal. 151, 135 (1995). ISIGoogle Scholar
    • 26. P. Yuan et al., Micropor. Mesopor. Mater. 93, 240 (2006). ISIGoogle Scholar
    • 27. J. D. Ellis, G. A. K. Thompson and A. G. Sykes, Inorg. Chem. 15, 3172 (1976). ISIGoogle Scholar
    • 28. S. A. Bagshaw and R. P. Cooney, Chem. Mater. 5, 1101 (1993). ISIGoogle Scholar
    • 29. C. Clinard et al., Clays Clay Miner. 51, 421 (2003). ISIGoogle Scholar
    • 30. P. Yuan et al., Micropor. Mesopor. Mater. 88, 8 (2006). ISIGoogle Scholar
    • 31. J. Liu and G. Zhang, Phys. Chem. Chem. Phys. 16, 8178 (2014). ISIGoogle Scholar
    • 32. T. Mandalia et al., Chem. Commun. 19, 2111 (1998). ISIGoogle Scholar
    • 33. P. Levitz and D. Tchoubar, J. Phys. I 2, 771 (1992). Google Scholar
    • 34. S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science 269, 1242 (1995). ISIGoogle Scholar
    • 35. C. E. Fowler et al., Appl. Surf. Sci. 253, 5485 (2007). ISIGoogle Scholar
    • 36. A. C. S. Alcântara et al., Appl. Clay Sci. 39, 160 (2008). ISIGoogle Scholar
    • 37. M. Dondi et al., Appl. Clay Sci. 18, 145 (2001). ISIGoogle Scholar
    • 38. Practical Identification of Clay Minerals: A Handbook for Teachers and Students in Clay Mineralogy, ed. J. Thorez, 1st edn. (G. Lelotte, Dison, 1976). Google Scholar
    • 39. D. M. Moore and R. C. Reynolds, X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn. (Oxford University Press, Oxford, 1989, 322, 321). Google Scholar
    • 40. H. M. Köster, Clay Miner. 31, 417 (1996). ISIGoogle Scholar
    • 41. M. Önal, Appl. Clay Sci. 37, 74 (2007). ISIGoogle Scholar
    • 42. C. Volzone and A. M. Cesio, Mat. Res. 12, 191 (2009). ISIGoogle Scholar
    • 43. W. Guo et al., Energ. Explor. Exploit. 35, 463 (2017). ISIGoogle Scholar
    • 44. W. R. Caseri, R. A. Shelden and U. W. Suter, Colloid Polym. Sci. 270, 392 (1992). ISIGoogle Scholar
    • 45. V. M. Goldschmidt, Undersogelser over lersedimenter. Beretning om Nordiske Jordbrugsforskeres. Kongress I Osla Copenhagen, Nordisk Jordsbrugsforsning 4, 434 (1926). Google Scholar
    • 46. V. C. Farmer, The Infrared Spectra of Minerals, ed. V. C. Farmer (Mineralogical Society, London, 1974), The layer silicates, pp. 331–363. Google Scholar
    • 47. M. Vlasova, G. Dominguez-Patino, N. Kakazey et al., Sci. Sinter. 35, 155 (2003). ISIGoogle Scholar
    • 48. A. Eisazadeh, K. A. Kassim and H. Nur, E. J. G. E. (Electronic Journal of Geotechnical Engineering) 15, 327 (2010). Google Scholar
    • 49. Z. Hubicki et al., Acta Phys. Pol. A 3, 312 (2009). ISIGoogle Scholar
    • 50. G. Akçay and M. K. Yurdakoc, Turk. J. Chem. 23, 105 (1999). ISIGoogle Scholar
    • 51. F. Gridi-Bennadji and P. Blanchart, J. Therm. Anal. Calorim. 90, 747 (2007). ISIGoogle Scholar
    • 52. P. Bansal and D. Sud, Desalination 267, 244 (2011). ISIGoogle Scholar
    • 53. S. K. Kansal, M. Singh and D. Sud, J. Hazard. Mater. 141, 581 (2007). ISIGoogle Scholar
    • 54. A. Akyol, H. C. Yatmaz and M. Bayramoglu, Appl. Catal. B Environ. 54, 19 (2004). ISIGoogle Scholar
    • 55. J. J. Pignatello, E. Oliveros and A. MacKay, Crit. Rev. Environ. Sci. Technol. 36, 1 (2006). ISIGoogle Scholar
    • 56. S. Rafqah et al., J. Photochem. Photobiol. A Chem. 199, 297 (2008). ISIGoogle Scholar
    • 57. Y. Zhong et al., J. Nanosci. Nanotechnol. 14, 7307 (2014). ISIGoogle Scholar
    • 58. N. Li et al., J. Mater. Sci. 52, 6937 (2017). ISIGoogle Scholar
    • 59. P. R. Gogate and A. B. Pandit, Adv. Environ. Res. 8, 501 (2004). ISIGoogle Scholar
    • 60. https://pubchem.ncbi.nlm.nih.gov/compound/Tetrabromobisphenol_A#section=Top. Google Scholar
    • 61. O. A. Ogunbayo and F. Michelangeli, Biochem. J. 408, 407 (2007). ISIGoogle Scholar
    • 62. F. Hosseini et al., Mater. Sci. Semicond. Process. 83, 175 (2018). ISIGoogle Scholar
    • 63. R. Georgekutty, M. K. Seery and S. C. Pillai, J. Phys. Chem. C 112, 13563 (2008). ISIGoogle Scholar