Silicon nanoparticles with iron impurities for multifunctional applications
Abstract
Crystalline silicon (Si) nanoparticles (NPs) doped with iron (Fe) in the range from 0.02 to 2.5 at.% were prepared by plasma-ablative synthesis and were investigated by means of the transmission electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), infrared spectroscopy and nuclear magnetic resonance relaxometry. While the nanocrystal size in Si:Fe NPs did not depend significantly on Fe content, the hydrodynamic diameter of NPs in aqueous suspensions increases from 50 to 180nm. Both the transverse and longitudinal proton relaxation time were found to decrease in the prepared suspensions of Si:Fe NPs. Maximal shortening of the transverse relaxion was observed for Si:Fe NPs with 0.2 at.% of Fe and the relaxation rate was almost linearly proportional to the NP concentration. Both these findings and in vivo tests indicate that Si:Fe NPs are promising for biomedical applications in magnetic resonance imaging (MRI) and therapy of cancer.
References
- 1. , J. Vac. Sci. Technol. B 31, 020801 (2013). Web of Science, Google Scholar
- 2. , Nanoscale 6, 2608 (2014). Web of Science, Google Scholar
- 3. , Int. J. Nanomed. 1, 451 (2006). Web of Science, Google Scholar
- 4. , Mat. Sci. Eng. R. 138, 85 (2019). Web of Science, Google Scholar
- 5. , Appl. Spectrosc. Rev. (2019). https://doi.org/10.1080/05704928.2019.1676255. Google Scholar
- 6. , Nat. Mater. 8, 331 (2009). Web of Science, Google Scholar
- 7. , J. Nutr. Health Aging. 11(2), 99 (2007). Web of Science, Google Scholar
- 8. , Adv. Drug. Deliv. Rev. 60(11), 1266 (2008). Web of Science, Google Scholar
- 9. , Nanomed. 7(9), 1281 (2012). Web of Science, Google Scholar
- 10. ,
Porous silicon in photodynamic and photothermal therapy , Handbook of Porous Silicon, ed. L. Canham (Springer, Cham, 2018), pp. 929–936 Google Scholar - 11. , Micropor.Mesopor. Mat. 210, 169 (2015). Web of Science, Google Scholar
- 12. , Appl. Phys. Lett. 103, 193110 (2013). Web of Science, Google Scholar
- 13. , Sci. Rep. 4, 7034 (2014). Web of Science, Google Scholar
- 14. , Appl. Surf. Sci. 516, 145661 (2020). Web of Science, Google Scholar
- 15. , Nat. Comm. 4, 2326 (2013). Web of Science, Google Scholar
- 16. , Laser Phys. 25, 075604 (2015). Web of Science, Google Scholar
- 17. , Appl. Phys. Lett. 89, 151920 (2006). Web of Science, Google Scholar
- 18. , J. Magn. Res. Imag. 10, 477 (1999). Web of Science, Google Scholar
- 19. , Clin. Radiol. 61, 905 (2006). Web of Science, Google Scholar
- 20. , Fundam. Clin. Pharmacol. 20, 563 (2006). Web of Science, Google Scholar
- 21. , Eur. Radiol. 3(12), 2688 (2003). Web of Science, Google Scholar
- 22. , Chem. Rev. 112, 2323 (2012). Web of Science, Google Scholar
- 23. , Acc. Chem. Res. 44(10), 979 (2011). Web of Science, Google Scholar
- 24. , Nanoscale 4(17), 5483 (2012). Web of Science, Google Scholar
- 25. , Appl. Phys. Lett. 107, 233702 (2015). Web of Science, Google Scholar
- 26. , J. Appl. Phys. 123, 104302 (2018). Web of Science, Google Scholar
- 27. , Phys. Stat. Sol. A 216, 1800897 (2019). Google Scholar
- 28. , Chem. Commun. 4, 463 (2006). Web of Science, Google Scholar
- 29. , J. Mater. Res. Technol. 8(5), 4470 (2019). Google Scholar
- 30. , Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control (CRC, NY, 2014). Google Scholar
- 31. , Acta Chem. Scand. 14, 1414 (1960). Google Scholar
- 32. , J. Phys. Chem. B 101, 1202 (1997). Web of Science, Google Scholar
- 33. , Corros. Sci. 50, 2493 (2008). Web of Science, Google Scholar
- 34. , Bull. Exp. Biol. Med. 161, 296 (2016). Web of Science, Google Scholar
- 35. , J. Phys. Conf. Ser. 945, 010202 (2018). Google Scholar
- 36. , Nat. Chem. Biol. 10(7), 9 (2014). Web of Science, Google Scholar