World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on The Chemical Principles of the Materials Design; Guest Editors: Valery V. Lunin, Stepan N. Kalmykov and Serguei V. SavilovNo Access

Silicon nanoparticles with iron impurities for multifunctional applications

    https://doi.org/10.1142/S179360472040007XCited by:5 (Source: Crossref)

    Crystalline silicon (Si) nanoparticles (NPs) doped with iron (Fe) in the range from 0.02 to 2.5 at.% were prepared by plasma-ablative synthesis and were investigated by means of the transmission electron microscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), infrared spectroscopy and nuclear magnetic resonance relaxometry. While the nanocrystal size in Si:Fe NPs did not depend significantly on Fe content, the hydrodynamic diameter of NPs in aqueous suspensions increases from 50 to 180nm. Both the transverse and longitudinal proton relaxation time were found to decrease in the prepared suspensions of Si:Fe NPs. Maximal shortening of the transverse relaxion was observed for Si:Fe NPs with 0.2 at.% of Fe and the relaxation rate was almost linearly proportional to the NP concentration. Both these findings and in vivo tests indicate that Si:Fe NPs are promising for biomedical applications in magnetic resonance imaging (MRI) and therapy of cancer.

    References