Enhanced magnetoelectric effect in Metglas/K NaNbO3/metglas lead-free ME laminates
Abstract
We report the magnetoelectric (ME) coupling in lead-free ME composites composed of Metglas (2605SA1) and KNaNbO3 (KNN) phases. Thickness of the magnetostrictive layers ( is changed by stacking number of Metglas layers (25m for each layer) while KNN is maintained at a fixed thickness (300m). As the number of Metglas layers increased, the peak magnitude of first increases, reaches a maximum and then decreases afterward. The static magnetic field (, where shows maximum magnitude shift toward a higher value as number of layers increases. The maximum value of 91mVcmOe is observed for optimized thickness ratio of / 1 (i.e. 5 layers) at 160Oe. The is further enhanced by taking advantage of magnetic flux concentration effect of Metglas as a function of its sheet aspect ratio. The present composites can offer promising opportunities of engineering environmental friendly ME laminate for applications in ME devices such as energy harvester and magnetic field sensors.
References
- 1. , Appl. Phys. Lett. 93, 103511 (2008). Crossref, Web of Science, Google Scholar
- 2. , Appl. Phys. Lett. 90, 022503 (2007). Crossref, Web of Science, Google Scholar
- 3. , Appl. Phys. Lett. 87, 062502 (2005). Crossref, Web of Science, Google Scholar
- 4. , Appl. Mater. 2, 046102 (2014). Crossref, Web of Science, Google Scholar
- 5. , Sov. Phys.-JETP 11, 708 (1960). Google Scholar
- 6. , Phys. Rev. Lett. 7, 310 (1961). Crossref, Web of Science, Google Scholar
- 7. , Philips Res. Rep. 27, 28 (1972). Google Scholar
- 8. , J. Electroceram. 7, 17 (2001). Crossref, Web of Science, Google Scholar
- 9. , J. Appl. Phys. 103, 031101 (2008). Crossref, Web of Science, Google Scholar
- 10. , Adv. Mater. 23, 1062 (2011). Crossref, Web of Science, Google Scholar
- 11. , Appl. Phys. Lett. 98, 232904 (2011). Crossref, Web of Science, Google Scholar
- 12. , Appl. Phys. Express. 4, 073001 (2011). Crossref, Web of Science, Google Scholar
- 13. , Appl. Phys. Lett. 86, 102901 (2005). Crossref, Web of Science, Google Scholar
- 14. , Appl. Phys. Lett. 89, 152911 (2006). Crossref, Web of Science, Google Scholar
- 15. , J. Mater Sci. 13, 1538 (1978). Crossref, Web of Science, Google Scholar
- 16. , J. Mater. Sci. Chem. Engin. 4, 1 (2016). Crossref, Web of Science, Google Scholar
- 17. , J. Mater. Sci. 40, 4375 (2005). Crossref, Web of Science, Google Scholar
- 18. , Mater. Chem. Phys. 115, 400 (2005). Google Scholar
- 19. , J. Alloy Compd. 484, 535 (2009). Crossref, Web of Science, Google Scholar
- 20. , J. Appl. Phys. 107, 093907 (2010). Crossref, Web of Science, Google Scholar
- 21. , J. Appl. Phys. 104, 044103 (2008). Crossref, Web of Science, Google Scholar
- 22. , Materials 4, 651 (2011). Crossref, Web of Science, Google Scholar
- 23. , Annu. Rev. Mater. Res. 40, 153 (2010). Crossref, Web of Science, Google Scholar
- 24. , NPG Asia Mater. 2, 61 (2010). Crossref, Web of Science, Google Scholar
- 25. , Phys. Rev. B. 89, 115128 (2014). Crossref, Web of Science, Google Scholar
- 26. , Phys. B. 17, 3910 (2008). Google Scholar
- 27. , Acta Mater. 56, 405 (2008). Crossref, Web of Science, Google Scholar
- 28. , Phys. Rev. B 65, 134402 (2002). Crossref, Web of Science, Google Scholar
- 29. , Appl. Phys. Lett. 89, 083507 (2006). Crossref, Web of Science, Google Scholar
- 30. , Sci. China Phys. Mech. Astron. 54, 581 (2011). Crossref, Web of Science, Google Scholar
- 31. , Appl. Phys. Lett. 95, 112903 (2009). Crossref, Web of Science, Google Scholar