In vivo fiber photometry of neural activity in response to optogenetically manipulated inputs in freely moving mice
Abstract
In vivo fiber photometry is a powerful technique to analyze the dynamics of population neurons during functional study of neuroscience. Here, we introduced a detailed protocol for fiber photometry-based calcium recording in freely moving mice, covering from virus injection, fiber stub insertion, optogenetical stimulation to data procurement and analysis. Furthermore, we applied this protocol to explore neuronal activity of mice lateral-posterior (LP) thalamic nucleus in response to optogenetical stimulation of primary visual cortex (V1) neurons, and explore axon clusters activity of optogenetically evoked V1 neurons. Final confirmation of virus-based protein expression in V1 and precise fiber insertion indicated that the surgery procedure of this protocol is reliable for functional calcium recording. The scripts for data analysis and some tips in our protocol are provided in details. Together, this protocol is simple, low-cost, and effective for neuronal activity detection by fiber photometry, which will help neuroscience researchers to carry out functional and behavioral study in vivo.
References
- 1. , “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13, 325–328 (2016) doi:10.1038/nmeth.3770. Crossref, Web of Science, Google Scholar
- 2. , “Multi-channel fiber photometry for population neuronal activity recording,” Biomed. Opt. Express 6, 3919–3931 (2015) doi:10.1364/BOE.6.003919. Crossref, Web of Science, Google Scholar
- 3. , “Imaging calcium signals in vivo: A powerful tool in physiology and pharmacology,” Br. J. Pharmacol. 163, 1605–1625 (2011) doi:10.1111/j.1476-5381.2010.00988.x. Crossref, Web of Science, Google Scholar
- 4. , “Imaging calcium in neurons,” Neuron 73, 862–885 (2012) doi:10.1016/j.neuron.2012.02.011. Crossref, Web of Science, Google Scholar
- 5. , “Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation,” Front. Mol. Neurosci. 8, 10 (2015) doi:10.3389/fnmol.2015.00010. Crossref, Web of Science, Google Scholar
- 6. , “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32, 13819–13840 (2012) doi:10.1523/JNEUROSCI.2601-12.2012. Crossref, Web of Science, Google Scholar
- 7. , “An expanded palette of genetically encoded Ca(2)() indicators,” Science 333, 1888–1891 (2011) doi:10.1126/science.1208592. Crossref, Web of Science, Google Scholar
- 8. , “Genetically encoded Ca2 indicators: Using genetics and molecular design to understand complex physiology,” J. Physiol. 578, 55–67 (2007) doi:10.1113/jphysiol.2006.120212. Crossref, Web of Science, Google Scholar
- 9. , “Promoters and control elements: Designing expression cassettes for gene therapy,” Curr. Gene. Ther. 4, 89–113 (2004). Crossref, Web of Science, Google Scholar
- 10. , “Stereotaxic gene delivery in the rodent brain,” Nat. Protoc. 1, 3166–3173 (2006) doi:10.1038/nprot.2006.450. Crossref, Web of Science, Google Scholar
- 11. , “Increasing the effectiveness of intracerebral injections in adult and neonatal mice: A neurosurgical point of view,” Neurosci. Bull. 31, 685–696 (2015) doi:10.1007/s12264-015-1558-0. Crossref, Web of Science, Google Scholar
- 12. , “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499, 295–300 (2013) doi:10.1038/nature12354. Crossref, Web of Science, Google Scholar
- 13. , “Probing deep brain circuitry: New advances in in vivo calcium measurement strategies,” ACS Chem. Neurosci. (2016) doi:10.1021/acschemneuro.6b00307. Web of Science, Google Scholar
- 14. , “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014) doi:10.1016/j.cell.2014.05.017. Crossref, Web of Science, Google Scholar
- 15. , “Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling,” Brain. Res. 1511, 138–152 (2013) doi:10.1016/j.brainres.2012.10.030. Crossref, Web of Science, Google Scholar
- 16. , “Rapid, reversible activation of AgRP neurons drives feeding behavior in mice,” J. Clin. Invest. 121, 1424–1428 (2011) doi:10.1172/JCI46229. Crossref, Web of Science, Google Scholar
- 17. , “A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity,” Chem. Commun. (Camb.) 51, 13599–13602 (2015) doi:10.1039/c5cc04731e. Crossref, Web of Science, Google Scholar
- 18. , “Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight,” PLoS One 9, e113873 (2014) doi:10.1371/journal.pone.0113873. Crossref, Web of Science, Google Scholar
- 19. , “An optimized fluorescent probe for visualizing glutamate neurotransmission,” Nat. Methods. 10, 162–170 (2013) doi:10.1038/nmeth.2333. Crossref, Web of Science, Google Scholar
- 20. , “A historical review of progress in the assessment of dietary zinc intake as an indicator of population zinc status,” Adv. Nutr. 3, 772–782 (2012) doi:10.3945/an.112.002287. Crossref, Web of Science, Google Scholar
- 21. , “A fluorescent, genetically-encoded voltage probe capable of resolving action potentials,” PLoS One 7, e43454 (2012) doi:10.1371/journal.pone.0043454. Crossref, Web of Science, Google Scholar
- 22. , “FRET-based indicator for imaging mitochondrial zinc ions,” Chem. Commun. (Camb.) 47, 11730–11732 (2011) doi:10.1039/c1cc14580k. Crossref, Web of Science, Google Scholar
- 23. , “Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR),” Proc. Natl. Acad. Sci. USA 108, 21063–21068 (2011) doi:10.1073/pnas.1109773109. Crossref, Web of Science, Google Scholar
- 24. , “Superoxide flashes in single mitochondria,” Cell 134, 279–290 (2008) doi:10.1016/j.cell.2008.06.017. Crossref, Web of Science, Google Scholar
- 25. , “Development of a fluorescent indicator for the bioimaging of nitric oxide,” Biol. Pharm. Bull. 20, 1229–1232 (1997). Crossref, Web of Science, Google Scholar
- 26. , “Bulk phase proton fluxes during the generation of membrane potential in rat liver mitochondria,” J. Biol. Chem. 266, 803–809 (1991). Crossref, Web of Science, Google Scholar
- 27. , “Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gasdynamic processes,” Appl. Opt. 20, 2153–2165 (1981) doi:10.1364/AO.20.002153. Crossref, Web of Science, Google Scholar
- 28. , “Pyronin–a fluorescent indicator of membrane potential of the mitochondria. Mechanism of action,” Acta. Physiol. Pharmacol. Bulg. 4, 62–68 (1978). Google Scholar