World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

In vivo fiber photometry of neural activity in response to optogenetically manipulated inputs in freely moving mice

    https://doi.org/10.1142/S1793545817430015Cited by:11 (Source: Crossref)

    In vivo fiber photometry is a powerful technique to analyze the dynamics of population neurons during functional study of neuroscience. Here, we introduced a detailed protocol for fiber photometry-based calcium recording in freely moving mice, covering from virus injection, fiber stub insertion, optogenetical stimulation to data procurement and analysis. Furthermore, we applied this protocol to explore neuronal activity of mice lateral-posterior (LP) thalamic nucleus in response to optogenetical stimulation of primary visual cortex (V1) neurons, and explore axon clusters activity of optogenetically evoked V1 neurons. Final confirmation of virus-based protein expression in V1 and precise fiber insertion indicated that the surgery procedure of this protocol is reliable for functional calcium recording. The scripts for data analysis and some tips in our protocol are provided in details. Together, this protocol is simple, low-cost, and effective for neuronal activity detection by fiber photometry, which will help neuroscience researchers to carry out functional and behavioral study in vivo.

    References

    • 1. C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13, 325–328 (2016) doi:10.1038/nmeth.3770. Crossref, Web of ScienceGoogle Scholar
    • 2. Q. Guo, J. Zhou, Q. Feng, R. Lin, H. Gong, Q. Luo, S. Zeng, M. Luo, L. Fu, “Multi-channel fiber photometry for population neuronal activity recording,” Biomed. Opt. Express 6, 3919–3931 (2015) doi:10.1364/BOE.6.003919. Crossref, Web of ScienceGoogle Scholar
    • 3. J. T. Russell, “Imaging calcium signals in vivo: A powerful tool in physiology and pharmacology,” Br. J. Pharmacol. 163, 1605–1625 (2011) doi:10.1111/j.1476-5381.2010.00988.x. Crossref, Web of ScienceGoogle Scholar
    • 4. C. Grienberger, A. Konnerth, “Imaging calcium in neurons,” Neuron 73, 862–885 (2012) doi:10.1016/j.neuron.2012.02.011. Crossref, Web of ScienceGoogle Scholar
    • 5. J. M. Gee, M. B. Gibbons, M. Taheri, S. Palumbos, S. C. Morris, R. M. Smeal, K. F. Flynn, M. N. Economo, C. G. Cizek, M. R. Capecchi, P. Tvrdik, K. S. Wilcox, J. A. White, “Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation,” Front. Mol. Neurosci. 8, 10 (2015) doi:10.3389/fnmol.2015.00010. Crossref, Web of ScienceGoogle Scholar
    • 6. J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderon, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32, 13819–13840 (2012) doi:10.1523/JNEUROSCI.2601-12.2012. Crossref, Web of ScienceGoogle Scholar
    • 7. Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y. F. Chang, M. Nakano, A. S. Abdelfattah, M. Fujiwara, T. Ishihara, T. Nagai and R. E. Campbell, “An expanded palette of genetically encoded Ca(2)(+) indicators,” Science 333, 1888–1891 (2011) doi:10.1126/science.1208592. Crossref, Web of ScienceGoogle Scholar
    • 8. M. I. Kotlikoff, “Genetically encoded Ca2+ indicators: Using genetics and molecular design to understand complex physiology,” J. Physiol. 578, 55–67 (2007) doi:10.1113/jphysiol.2006.120212. Crossref, Web of ScienceGoogle Scholar
    • 9. E. D. Papadakis, S. A. Nicklin, A. H. Baker, S. J. White, “Promoters and control elements: Designing expression cassettes for gene therapy,” Curr. Gene. Ther. 4, 89–113 (2004). Crossref, Web of ScienceGoogle Scholar
    • 10. A. Cetin, S. Komai, M. Eliava, P. H. Seeburg, P. Osten, “Stereotaxic gene delivery in the rodent brain,” Nat. Protoc. 1, 3166–3173 (2006) doi:10.1038/nprot.2006.450. Crossref, Web of ScienceGoogle Scholar
    • 11. B. Mathon, M. Nassar, J. Simonnet, C. Le Duigou, S. Clemenceau, R. Miles, D. Fricker, “Increasing the effectiveness of intracerebral injections in adult and neonatal mice: A neurosurgical point of view,” Neurosci. Bull. 31, 685–696 (2015) doi:10.1007/s12264-015-1558-0. Crossref, Web of ScienceGoogle Scholar
    • 12. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499, 295–300 (2013) doi:10.1038/nature12354. Crossref, Web of ScienceGoogle Scholar
    • 13. K. S. Girven, D. R. Sparta, “Probing deep brain circuitry: New advances in in vivo calcium measurement strategies,” ACS Chem. Neurosci. (2016) doi:10.1021/acschemneuro.6b00307. Web of ScienceGoogle Scholar
    • 14. L. A. Gunaydin, L. Grosenick, J. C. Finkelstein, I. V. Kauvar, L. E. Fenno, A. Adhikari, S. Lammel, J. J. Mirzabekov, R. D. Airan, K. A. Zalocusky, K. M. Tye, P. Anikeeva, R. C. Malenka, K. Deisseroth, “Natural neural projection dynamics underlying social behavior,” Cell 157, 1535–1551 (2014) doi:10.1016/j.cell.2014.05.017. Crossref, Web of ScienceGoogle Scholar
    • 15. T. Shimano, B. Fyk-Kolodziej, N. Mirza, M. Asako, K. Tomoda, S. Bledsoe, Z. H. Pan, S. Molitor, A. G. Holt, “Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling,” Brain. Res. 1511, 138–152 (2013) doi:10.1016/j.brainres.2012.10.030. Crossref, Web of ScienceGoogle Scholar
    • 16. M. J. Krashes, S. Koda, C. Ye, S. C. Rogan, A. C. Adams, D. S. Cusher, E. Maratos-Flier, B. L. Roth, B. B. Lowell, “Rapid, reversible activation of AgRP neurons drives feeding behavior in mice,” J. Clin. Invest. 121, 1424–1428 (2011) doi:10.1172/JCI46229. Crossref, Web of ScienceGoogle Scholar
    • 17. N. Zhao, S. Chen, Y. Hong and B. Z. Tang, “A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity,” Chem. Commun. (Camb.) 51, 13599–13602 (2015) doi:10.1039/c5cc04731e. Crossref, Web of ScienceGoogle Scholar
    • 18. Z. Han, L. Jin, F. Chen, J. J. Loturco, L. B. Cohen, A. Bondar, J. Lazar and V. A. Pieribone, “Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight,” PLoS One 9, e113873 (2014) doi:10.1371/journal.pone.0113873. Crossref, Web of ScienceGoogle Scholar
    • 19. J. S. Marvin, B. G. Borghuis, L. Tian, J. Cichon, M. T. Harnett, J. Akerboom, A. Gordus, S. L. Renninger, T. W. Chen, C. I. Bargmann, M. B. Orger, E. R. Schreiter, J. B. Demb, W. B. Gan, S. A. Hires, L. L. Looger, “An optimized fluorescent probe for visualizing glutamate neurotransmission,” Nat. Methods. 10, 162–170 (2013) doi:10.1038/nmeth.2333. Crossref, Web of ScienceGoogle Scholar
    • 20. R. S. Gibson, “A historical review of progress in the assessment of dietary zinc intake as an indicator of population zinc status,” Adv. Nutr. 3, 772–782 (2012) doi:10.3945/an.112.002287. Crossref, Web of ScienceGoogle Scholar
    • 21. L. Barnett, J. Platisa, M. Popovic, V. A. Pieribone, T. Hughes, “A fluorescent, genetically-encoded voltage probe capable of resolving action potentials,” PLoS One 7, e43454 (2012) doi:10.1371/journal.pone.0043454. Crossref, Web of ScienceGoogle Scholar
    • 22. K. Sreenath, J. R. Allen, M. W. Davidson, L. A. Zhu, “FRET-based indicator for imaging mitochondrial zinc ions,” Chem. Commun. (Camb.) 47, 11730–11732 (2011) doi:10.1039/c1cc14580k. Crossref, Web of ScienceGoogle Scholar
    • 23. D. Li, S. Chen, E. A. Bellomo, A. I. Tarasov, C. Kaut, G. A. Rutter, W. H. Li, “Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR),” Proc. Natl. Acad. Sci. USA 108, 21063–21068 (2011) doi:10.1073/pnas.1109773109. Crossref, Web of ScienceGoogle Scholar
    • 24. W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang, K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Kao, E. G. Lakatta, S. S. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, H. Cheng, “Superoxide flashes in single mitochondria,” Cell 134, 279–290 (2008) doi:10.1016/j.cell.2008.06.017. Crossref, Web of ScienceGoogle Scholar
    • 25. H. Kojima, K. Sakurai, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Akaike, H. Maeda, T. Nagano, “Development of a fluorescent indicator for the bioimaging of nitric oxide,” Biol. Pharm. Bull. 20, 1229–1232 (1997). Crossref, Web of ScienceGoogle Scholar
    • 26. R. J. McKenzie, G. F. Azzone and T. E. Conover, “Bulk phase proton fluxes during the generation of membrane potential in rat liver mitochondria,” J. Biol. Chem. 266, 803–809 (1991). Crossref, Web of ScienceGoogle Scholar
    • 27. R. L. McKenzie, K. P. Gross, “Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gasdynamic processes,” Appl. Opt. 20, 2153–2165 (1981) doi:10.1364/AO.20.002153. Crossref, Web of ScienceGoogle Scholar
    • 28. T. Tomov, “Pyronin–a fluorescent indicator of membrane potential of the mitochondria. Mechanism of action,” Acta. Physiol. Pharmacol. Bulg. 4, 62–68 (1978). Google Scholar