World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Effect of pneumatic compression therapy on lymph movement in lymphedema-affected extremities, as assessed by near-infrared fluorescence lymphatic imaging by:11 (Source: Crossref)

    Previous studies have shown cost effectiveness and quality-of-life benefit of pneumatic compression therapy (PCT) for lymphedema (LE). Insurers, such as the Centers for Medicare/Medicaid (CMS), however, desire visual proof that PCT moves lymph. Near-infrared fluorescence lymphatic imaging (NIRFLI) was used to visualize lymphatic anatomy and function in four subjects with primary and cancer treatment-related LE of the lower extremities before, during, and after PCT. Optically transparent and windowed PCT garments allowed visualization of lymph movement during single, 1h PCT treatment sessions. Visualization revealed significant extravascular and lymphatic vascular movement of intradermally injected dye in all subjects. In one subject with sufficient patent lymphatic vessels to allow quantification of lymph pumping velocities and frequencies, these values were significantly increased during and after PCT as compared to pre-treatment values. Lymphatic contractile activity in patent lymphatic vessels occurred in concert with the sequential cycling of PCT. Direct visualization revealed increased lymphatic function, during and after PCT therapy, in all LE-affected extremities. Further studies are warranted to assess the effects of PCT pressure and sequences on lymph uptake and movement.


    • 1. J. N. Cormier, R. L. Askew, K. S. Mungovan, Y. Xing, M. I. Ross, J. M. Armer, “Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema,” Cancer 116, 5138–5149 (2010). Crossref, ISIGoogle Scholar
    • 2. M. Foldi, E. Foldi, Foldi’s Textbook of Lymphology, 2nd Edition, Elsevier GmbH, (2006). Google Scholar
    • 3. P. Klernäs, L. J. Kristjanson, K. Johansson, “Assessment of quality of life in lymphedema patients: Validity and reliability of the Swedish version of the Lymphedema Quality of Life Inventory (LQOLI),” Lymphology 43, 135–145 (2010). ISIGoogle Scholar
    • 4. M. R. Fu, “Breast cancer-related lymphedema: Symptoms, diagnosis, risk reduction, and management,” World J. Clin. Oncol. 5, 241–247 (2014). CrossrefGoogle Scholar
    • 5. D. M. Smeltzer, G. B. Stickler, A. Shirger, “Primary lymphedema in children and adolescents: A follow-up study and review,” Pediatrics 76, 206–218 (1985). ISIGoogle Scholar
    • 6. Google Scholar
    • 7. R. T. Eberhart, J. D. Raffetto, “Chronic venous insufficiency,” Circulation 130, 333–346 (2014). Crossref, ISIGoogle Scholar
    • 8. N. L. Stout Gergich, L. A. Pfalzer, C. McGarvey, B. Springer, L. H. Gerber, P. Soballe, “Preoperative assessment enables the early diagnosis and successful treatment of lymphedema,” Cancer 112, 2809–2819 (2008). Crossref, ISIGoogle Scholar
    • 9. C. Ketterer, “Surgical options for lymphedema following breast cancer treatment,” Plast. Surg. Nurses J. 34, 82–85 (2014). CrossrefGoogle Scholar
    • 10. D. W. Chang, H. Suami, R. Skoracki, “A prospective analysis of 100 consecutive lymhovenous bypass cases for treatment of extremity lymphedema, Plast. Reconstr. Surg. 132, 1305–1314 (2013). Crossref, ISIGoogle Scholar
    • 11. R. J. Allen Jr., M-H. Cheng, “Lymphedema surgery: Patient selection and an overview of surgical techniques,” J. Surg. Oncol. 113, 923–931 (2016). Crossref, ISIGoogle Scholar
    • 12. C. Becker, J. Assouad, M. Riquet, G. Hidden, “Post-mastectomy lymphedema: Long-term results following microsurgical lymph node transplantation,” Ann. Surg. 243, 313–315 (2006). Crossref, ISIGoogle Scholar
    • 13. M. Mihara, H. Hara, S. Tange, H. P. Zhou, M. Kawahara, Y. Shimizu, N. Murai, “Multisite lymphaticovenular bypass using supermicrosurgery technique for lymphedema management in lower lymphedema cases,” Plast. Reconstr. Surg. 138, 262–272 (2016). Crossref, ISIGoogle Scholar
    • 14. M. F. Scaglioni, M. Arvanitakis, Y. C. Chen, P. Giovanoli, C-S. Yang, E. I. Chang, “Comprehensive review of vascularized lymph node transfers for lymphedema: Outcomes and complications,” Microsurgery, Jun 07, doi: 10.1002/micr.30079 (2016) [Epub ahead of print]. Crossref, ISIGoogle Scholar
    • 15. The diagnosis and treatment of pheripheral lymphedema: 2013 consensus document of the International Society of Lymphology, Lymphology 46, 1–11 (2013). Google Scholar
    • 16. I-C. Tan, E. A. Maus, J. C. Rasmussen, M. V. Marshall, K. E. Adams, C. E. Fife, L. A. Smith, W. Chan, E. M. Sevick-Muraca, “Assessment of lymphatic contractile function after manual lymphatic drainage using near-infrared fluorescence imaging,” Arch. Phys. Med. Rehabil. 92, 756–764 (2011). Crossref, ISIGoogle Scholar
    • 17. K. Ashforth, E. A. Maus, F. J. Schingale, A protocol for pneumatic compression home use, Abstract, World Congress of Lymphology, San Francisco USA, Sept. (2015). Google Scholar
    • 18. Mego Afek Ac Ltd., Israel Google Scholar
    • 19. C. J. Pappas, T. F. O’Donnell Jr., “ Long-term results of compression treatment for lymphedema,” J. Vasc. Surg. 16, 555–564 (1992). Crossref, ISIGoogle Scholar
    • 20. D. M. Richmand, T. F. O’Donnell Jr, A. Zelikovski, “Sequential pneumatic compression for lymphedema—a controlled trial,” Arch. Surg. 120, 1116–1119 (1985). CrossrefGoogle Scholar
    • 21. K. Johannsson, E. Lie, C. Ekdahl, J. Lindfeldt, “A randomized study comparing manual lymph drainage with sequential pneumatic compression for treatment of postoperative arm lymphedema,” Lymphology 31, 56–64 (1998). ISIGoogle Scholar
    • 22. O. Wilburn, P. Wilburn, S. G. Rockson, “A pilot, prospective evaluation of a novel alternative for maintenance therapy of breast cancer-associated lymphedema [ISRCTN76522412],” BMC Cancer 6, 84 (2006). Crossref, ISIGoogle Scholar
    • 23. P. Karaca-Mandic, A. T. Hirsch, S. G. Rockson, S. H. Ridner, “The cutaneous, net clinical, and health economic benefits of advanced pneumatic compression devices in patients with lymphedema,” JAMA Dermatol. 151, 1187–1193 (2015). Crossref, ISIGoogle Scholar
    • 24. M. Oremus, K. Walker, I. Dayes, P. Raina, Diagnosis and treatment of secondary lymphedema Technology Asessment Report 2010, USA Department of Health & Human Services Agency for Healthcare Research and Quality, May 28, (2010). Google Scholar
    • 25. N. J. Preston, K. Seers, P. S. Mortimer, “Physical therapies for reducing and controlling lymphedema of the limbs,” Cochrane Database Syst Rev. Oct 18;(4):CD003141, (2004). Crossref, ISIGoogle Scholar
    • 26. F. Baulieu, J. I., Baulieu, L. Vaillant, V. Secchi, J. Barsotti, “Factorial analysis in radionuclide lymphography: Assessment of the effects of sequential pneumatic compression,” Lymphology 22, 178–185 (1989). ISIGoogle Scholar
    • 27. M. V. Marshall, J. C. Rasmussen, I-C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: A review and update,” Open Surg. Oncol. J. 2, 12–25 (2010). CrossrefGoogle Scholar
    • 28. T. Yamamoto, N. Matsuda, K. Doi, A. Oshima, H. Yoshimatsu, T. Todokoro, F. Ogata, M. Mihara, M. Narushima, T. Iida, I. Koshima, “The earliest finding of indocyanine green lymhography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer treatment: The modified dermal backflow stage and concept of subclinical lymphedema,” Plast. Reconstr. Surg. 128, 314e–321e (2011). Crossref, ISIGoogle Scholar
    • 29. E. M. Sevick-Muraca, “Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications,” Annu. Rev. Med. 63, 217–231 (2012). Crossref, ISIGoogle Scholar
    • 30. F. Meric-Bernstam, J. C. Rasmussen, S. Krishnamurthy, I-C. Tan, B. Zhu, J. L. Wagner, G. V. Babiera, E. A. Mittendorf, E. M. Sevick-Muraca, “Toward nodal staging of axillary lymph node basins through intradermal administration of fluorescent imaging agents,” Biomed. Opt. Exp. 5, 183–196 (2013). Crossref, ISIGoogle Scholar
    • 31. E. M. Sevick-Muraca, S. Kwon, J. C. Rasmussen, “Emerging lymphatic imaging technologies for mouse and man,” J. Clin. Invest. 124, 905–914 (2014). Crossref, ISIGoogle Scholar
    • 32. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: Feasibility study,” Radiology 246, 734–741 (2008). Crossref, ISIGoogle Scholar
    • 33. P. S. Mortimer, S. G. Rockson, “New developments in the clinical aspects of lymphatic disease,” J. Clin. Invest. 124, 915–921 (2014). Crossref, ISIGoogle Scholar
    • 34. J. C. Rasmussen, I-C. Tan, M. V. Marshall, K. E. Adams, C. E. Fife, E. A. Maus, L. A. Smith, K. R. Covington, E. M. Sevick-Muraca, “Human lymphatic architecture and dynamic transport imaged using near-infrared fluorescence,” Transl. Oncol. 3, 362–372 (2010). Crossref, ISIGoogle Scholar
    • 35. M. B. Aldrich, E. M. Sevick-Muraca, “Cytokines are systemic effectors of lymphatic function in acute inflammation,” Cytokine 64, 362–369 (2013). Crossref, ISIGoogle Scholar
    • 36. X. Geng, B. Cha, M. R. Mahamud, K. C. Lim, R. Silasi-Mansat, M. K. Uddin, N. Miura, L. Xia, A. M. Simon, J. D. Engel, H. Chen, F. Lupu, R. S. Srinivasan, “Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development,” Dev. Biol. 409, 218–233 (2016). Crossref, ISIGoogle Scholar
    • 37. F. Tatin, A. Taddei, A. Weston, E. Fuchs, D. Devenport, F. Tissir, T. Makinen, “Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis,” Dev. Cell. 26, 31–44 (2013). Crossref, ISIGoogle Scholar
    • 38. M. L. Gonzalez-Garay, M. B. Aldrich, J. C. Rasmussen, R. Guilliod, P. E. Lapinski, P. D. King, E. M. Sevick-Muraca, “A novel mutation in CELSR1 is associated with hereditary lymphedema,” Vasc. Cell 8, 1 (2016). Crossref, ISIGoogle Scholar
    • 39. K. E. Adams, J. C. Rasmussen, C. Darne, I-C. Tan, M. B. Aldrich, M. V. Marshall, C. E. Fife, E. A. Maus, L. A. Smith, R. Guilliod, S. Hoy, E. M. Sevick-Muraca, “Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema,” Biomed. Opt. Express. 1, 114–125 (2010). Crossref, ISIGoogle Scholar
    • 40. T. Yamamoto, M. Narushima, K. Doi, A. Oshima, F. Ogata, M. Mihara, I. Koshima, G. S. Mundinger, “Characteristic indocyanine green lymphography findings in lower extremity lymphedema: The generation of a novel lymphedema severity staging system using dermal backflow patterns,” Plast. Reconstr. Surg. 127, 1979–1986 (2011). Crossref, ISIGoogle Scholar
    • 41. T. Yamamoto, H. Yoshimatsu, M. Narushima, N. Yamamoto, A. Hayashi, I. Koshima, “Indocyanine green lymphography findings in primary leg lymphedema,” Eur. J. Vasc. Endovasc. Surg. 49, 95–102 (2015). Crossref, ISIGoogle Scholar
    • 42. T. Yamamoto, M. Narushima, H. Yoshimatsu, N. Yamamoto, A. Oka, Y. Seki, T. Todokoro, T. Iida, I. Koshima, “Indocyanine green velocity: Lymph transportation capacity deterioration with progression of lymphedema,” Ann. Plast. Surg. 71, 591–594 (2013). Crossref, ISIGoogle Scholar
    • 43. Y. Wang, G. Oliver, “Current views on the function of the lymphatic vasculature in health and disease,” Genes. Dev. 24, 2115–2126 (2010). Crossref, ISIGoogle Scholar
    • 44. H. Brorson, K. Ohlin, G. Olsson, M. K. Karlsson, “Breast cancer-related chronic arm lymphedema is associated with excess adipose and muscle tissue,” Lymphat. Res. Bio. 7, 3–10 (2009). CrossrefGoogle Scholar
    • 45. A. Szuba, R. Achula, S. Rockson, “Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema. A randomized, prospective study of a role for adjunctive intermittent pneumatic compression,” Cancer 95, 2260–2367 (2002). Crossref, ISIGoogle Scholar
    • 46. S. C. Muluk, A. T. Hirsch, E. C. Taffe, “Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes,” Eur. J. Vasc. Endovasc. Surg. 46, 480–487 (2013). Crossref, ISIGoogle Scholar
    • 47. S. N. Blumberg, T. Berland, C. Rockman, F. Mussa, A. Brooks, N. Cayne, T. Maldonado, “Pneumatic compression improves quality of life in patients with lower extremity lymphedema,” Ann. Vasc. Surg. (2015), doi: 10.1016/j.avsg.2015.07.004. Crossref, ISIGoogle Scholar
    • 48. A. T. Hirsch, P. K. Mandic, Advanced pneumatic compression device treatment of lymphedema improves health outcomes and lowers cost, in the 11th National Lymphedema Network Int. Conf., Washington, D.C., 3–7 September 2014. Google Scholar
    • 49. Y. Seki, T. Yamamoto, H. Yoshimatsu, A. Hayashi, A. Kurazono, M. Mori, Y. Kato, I. Koshima, “The superior-edge-of-the-knee incision method in lymphaticovenular anastomosis for lower extremity lymphedema,” Plast. Reconstr. Surg. 136, 665e–675e (2015). Crossref, ISIGoogle Scholar
    • 50. W. L. Olszewski, P. J. Ambujam, M. Zaleska, M. Cakala, “Where do lymph and tissue fluid accumulate in lymphedema of the lower limbs caused by obliteration of lymphatic collectors?, ” Lymphology 42, 105–111 (2009). ISIGoogle Scholar