World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Dynamical complexity and K-theory of Lp operator crossed products

    https://doi.org/10.1142/S1793525320500314Cited by:3 (Source: Crossref)

    We apply quantitative (or controlled) K-theory to prove that a certain Lp assembly map is an isomorphism for p[1,) when an action of a countable discrete group Γ on a compact Hausdorff space X has finite dynamical complexity. When p=2, this is a model for the Baum–Connes assembly map for Γ with coefficients in C(X), and was shown to be an isomorphism by Guentner et al.

    AMSC: 19K56, 46L80, 46L85, 47L10, 37B05

    References

    • 1. P. Baum, A. Connes and N. Higson , Classifying space for proper actions and K-theory of group C-algebras, Contemp. Math. 167 (1994) 241–291. Google Scholar
    • 2. G. Carlsson and B. Goldfarb , The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math. 157 (2004) 405–418. CrossrefGoogle Scholar
    • 3. S. Chang, S. Ferry and G. Yu , Bounded rigidity of manifolds and asymptotic dimension growth, J. K-Theory 1 (2008) 129–144. CrossrefGoogle Scholar
    • 4. X. Chen and Q. Wang , Localization algebras and duality, J. Lond. Math. Soc. 66 (2002) 227–239. CrossrefGoogle Scholar
    • 5. Y. C. Chung , Quantitative K-theory for Banach algebras, J. Funct. Anal. 274 (2018) 278–340. CrossrefGoogle Scholar
    • 6. Y. C. Chung and K. Li , Rigidity of p Roe-type algebras, Bull. Lond. Math. Soc. 50 (2018) 1056–1070. CrossrefGoogle Scholar
    • 7. Y. C. Chung and P. W. Nowak, Expanders are counterexamples to the coarse p-Baum–Connes conjecture, preprint (2018), arXiv:1811.10457. Google Scholar
    • 8. A. Defant and K. Floret , Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, Vol. 176 (North-Holland Publishing Co., 1993). Google Scholar
    • 9. G. Elliott , The classification problem for amenable C-algebras, in Proc. the Int. Congress of Mathematicians (Zurich, Switzerland, 1994) (Birkhauser, Basel, 1995), pp. 922–932. CrossrefGoogle Scholar
    • 10. G. Elliott, G. Gong, H. Lin and Z. Niu, On the classification of simple amenable C-algebras with finite decomposition rank, II, preprint (2016), arXiv:1507.03437. Google Scholar
    • 11. G. Elliott, G. Gong, H. Lin and Z. Niu, The classification of simple separable KK-contractible C-algebras with finite nuclear dimension, preprint (2017), arXiv:1712.09463. Google Scholar
    • 12. A Engel , Banach strong Novikov conjecture for polynomially contractible groups, Adv. Math. 330 (2018) 148–172. CrossrefGoogle Scholar
    • 13. E. Gardella and M. Lupini , Representations of étale groupoids on Lp-spaces, Adv. Math. 318 (2017) 233–278. CrossrefGoogle Scholar
    • 14. E. Gardella and H. Thiel , Group algebras acting on Lp-spaces, J. Fourier Anal. Appl. 21 (2015) 1310–1343. CrossrefGoogle Scholar
    • 15. E. Gardella and H. Thiel , Representations of p-convolution algebras on Lq-spaces, Trans. Amer. Math. Soc. 371 (2019) 2207–2236. CrossrefGoogle Scholar
    • 16. M. Gromov , Asymptotic invariants of infinite groups, in Geometric Group Theory, Volume 2, London Mathematical Society Lecture Note Series, Vol. 182 (Cambridge Univ. Press, 1993). Google Scholar
    • 17. E. Guentner, R. Tessera and G. Yu , A notion of geometric complexity and its application to topological rigidity, Invent. Math. 189 (2012) 315–357. CrossrefGoogle Scholar
    • 18. E. Guentner, R. Willett and G. Yu , Dynamic asymptotic dimension: Relation to dynamics, topology, coarse geometry, and C-algebras, Math. Ann. 367 (2017) 785–829. CrossrefGoogle Scholar
    • 19. E. Guentner, R. Willett and G. Yu, Dynamical complexity and controlled operator K-theory, preprint (2016), arXiv:1609.02093. Google Scholar
    • 20. S. Hejazian and S. Pooya , Simple reduced Lp-operator crossed products with unique trace, J. Operator Theory 74 (2015) 133–147. CrossrefGoogle Scholar
    • 21. N. Higson and J. Roe , Analytic K-Homology, Oxford Mathematical Monographs (Oxford Univ. Press, 2001). Google Scholar
    • 22. N. Higson, J. Roe and G. Yu , A coarse Mayer–Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993) 85–97. CrossrefGoogle Scholar
    • 23. V. Lafforgue , K-théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes, Invent. Math. 149 (2002) 1–95. CrossrefGoogle Scholar
    • 24. J. Lamperti , On the isometries of certain function-spaces, Pacific J. Math. 8 (1958) 459–466. CrossrefGoogle Scholar
    • 25. B. Liao and G. Yu, K-theory of group Banach algebras and Banach property RD, preprint (2017), arXiv:1708.01982. Google Scholar
    • 26. H. Oyono-Oyono and G. Yu , On quantitative operator K-theory, Ann. Inst. Fourier (Grenoble) 65 (2015) 605–674. CrossrefGoogle Scholar
    • 27. H. Oyono-Oyono and G. Yu , Quantitative K-theory and the Künneth formula for operator algebras, J. Funct. Anal. 277(7) (2019) 2003–2091. CrossrefGoogle Scholar
    • 28. N. C. Phillips, Open problems related to operator algebras on Lp spaces, https://pdfs.semanticscholar.org/0823/5038ec45079e7721a59021a4492da2c2b1a3.pdf. Google Scholar
    • 29. N. C. Phillips, Analogs of Cuntz algebras on Lp spaces, preprint (2013), arXiv:1309.4196. Google Scholar
    • 30. N. C. Phillips, Crossed products of Lp operator algebras and the K-theory of Cuntz algebras on Lp spaces, preprint (2013), arXiv:1309.6406. Google Scholar
    • 31. N. C. Phillips and D. P. Blecher, Lp operator algebras with approximate identities I, preprint (2018), arXiv:1802.04424. Google Scholar
    • 32. N. C. Phillips and M. G. Viola, Classification of Lp AF algebras, preprint (2017), arXiv:1707.09257. Google Scholar
    • 33. Y. Qiao and J. Roe , On the localization algebra of Guoliang Yu, Forum Math. 22 (2010) 657–665. CrossrefGoogle Scholar
    • 34. J. Roe , An index theorem on open manifolds I, J. Differential Geom. 27 (1988) 87–113. CrossrefGoogle Scholar
    • 35. J. Roe , Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), https://bookstore.ams.org/memo-104-497/. Google Scholar
    • 36. J. Roe , Comparing analytic assembly maps, Q. J. Math. 53 (2002) 241–248. CrossrefGoogle Scholar
    • 37. A. Tikuisis , Nuclear dimension, 𝒵-stability, and algebraic simplicity for stably projectionless C-algebras, Math. Ann. 358 (2014) 729–778. CrossrefGoogle Scholar
    • 38. A. Tikuisis, S. White and W. Winter , Quasidiagonality of nuclear C-algebras, Ann. of Math. 185 (2017) 229–284. CrossrefGoogle Scholar
    • 39. J.-L. Tu , La conjecture de Baum–Connes pour les feuilletages moyennables, K-Theory 17 (1999) 215–264. Google Scholar
    • 40. W. Winter and J. Zacharias , The nuclear dimension of C-algebras, Adv. Math. 224 (2010) 461–498. CrossrefGoogle Scholar
    • 41. G. Yu , Localization algebras and the coarse Baum–Connes conjecture, K-Theory 11 (1997) 307–318. Google Scholar
    • 42. G. Yu , The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147 (1998) 325–355. CrossrefGoogle Scholar
    • 43. G. Yu , Quantitative K-theory for geometric operator algebras, in K-Theory for Group C∗-Algebras and Semigroup C∗-Algebras, Oberwolfach Seminars, Vol. 47 (Birkhäuser, 2017). CrossrefGoogle Scholar