Dynamical complexity and -theory of operator crossed products
Abstract
We apply quantitative (or controlled) -theory to prove that a certain assembly map is an isomorphism for when an action of a countable discrete group on a compact Hausdorff space has finite dynamical complexity. When , this is a model for the Baum–Connes assembly map for with coefficients in , and was shown to be an isomorphism by Guentner et al.
References
- 1. , Classifying space for proper actions and -theory of group -algebras, Contemp. Math. 167 (1994) 241–291. Google Scholar
- 2. , The integral -theoretic Novikov conjecture for groups with finite asymptotic dimension, Invent. Math. 157 (2004) 405–418. Crossref, Google Scholar
- 3. , Bounded rigidity of manifolds and asymptotic dimension growth, J. K-Theory 1 (2008) 129–144. Crossref, Google Scholar
- 4. , Localization algebras and duality, J. Lond. Math. Soc. 66 (2002) 227–239. Crossref, Google Scholar
- 5. , Quantitative -theory for Banach algebras, J. Funct. Anal. 274 (2018) 278–340. Crossref, Google Scholar
- 6. , Rigidity of Roe-type algebras, Bull. Lond. Math. Soc. 50 (2018) 1056–1070. Crossref, Google Scholar
- 7. Y. C. Chung and P. W. Nowak, Expanders are counterexamples to the coarse -Baum–Connes conjecture, preprint (2018), arXiv:1811.10457. Google Scholar
- 8. , Tensor Norms and Operator Ideals,
North-Holland Mathematics Studies , Vol. 176 (North-Holland Publishing Co., 1993). Google Scholar - 9. , The classification problem for amenable -algebras, in Proc. the Int. Congress of Mathematicians (Zurich, Switzerland, 1994) (Birkhauser, Basel, 1995), pp. 922–932. Crossref, Google Scholar
- 10. G. Elliott, G. Gong, H. Lin and Z. Niu, On the classification of simple amenable -algebras with finite decomposition rank, II, preprint (2016), arXiv:1507.03437. Google Scholar
- 11. G. Elliott, G. Gong, H. Lin and Z. Niu, The classification of simple separable -contractible -algebras with finite nuclear dimension, preprint (2017), arXiv:1712.09463. Google Scholar
- 12. , Banach strong Novikov conjecture for polynomially contractible groups, Adv. Math. 330 (2018) 148–172. Crossref, Google Scholar
- 13. , Representations of étale groupoids on -spaces, Adv. Math. 318 (2017) 233–278. Crossref, Google Scholar
- 14. , Group algebras acting on -spaces, J. Fourier Anal. Appl. 21 (2015) 1310–1343. Crossref, Google Scholar
- 15. , Representations of -convolution algebras on -spaces, Trans. Amer. Math. Soc. 371 (2019) 2207–2236. Crossref, Google Scholar
- 16. ,
Asymptotic invariants of infinite groups , in Geometric Group Theory, Volume 2,London Mathematical Society Lecture Note Series , Vol. 182 (Cambridge Univ. Press, 1993). Google Scholar - 17. , A notion of geometric complexity and its application to topological rigidity, Invent. Math. 189 (2012) 315–357. Crossref, Google Scholar
- 18. , Dynamic asymptotic dimension: Relation to dynamics, topology, coarse geometry, and -algebras, Math. Ann. 367 (2017) 785–829. Crossref, Google Scholar
- 19. E. Guentner, R. Willett and G. Yu, Dynamical complexity and controlled operator -theory, preprint (2016), arXiv:1609.02093. Google Scholar
- 20. , Simple reduced -operator crossed products with unique trace, J. Operator Theory 74 (2015) 133–147. Crossref, Google Scholar
- 21. , Analytic K-Homology,
Oxford Mathematical Monographs (Oxford Univ. Press, 2001). Google Scholar - 22. , A coarse Mayer–Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993) 85–97. Crossref, Google Scholar
- 23. , -théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes, Invent. Math. 149 (2002) 1–95. Crossref, Google Scholar
- 24. , On the isometries of certain function-spaces, Pacific J. Math. 8 (1958) 459–466. Crossref, Google Scholar
- 25. B. Liao and G. Yu, -theory of group Banach algebras and Banach property RD, preprint (2017), arXiv:1708.01982. Google Scholar
- 26. , On quantitative operator -theory, Ann. Inst. Fourier (Grenoble) 65 (2015) 605–674. Crossref, Google Scholar
- 27. , Quantitative -theory and the Künneth formula for operator algebras, J. Funct. Anal. 277(7) (2019) 2003–2091. Crossref, Google Scholar
- 28. N. C. Phillips, Open problems related to operator algebras on spaces, https://pdfs.semanticscholar.org/0823/5038ec45079e7721a59021a4492da2c2b1a3.pdf. Google Scholar
- 29. N. C. Phillips, Analogs of Cuntz algebras on spaces, preprint (2013), arXiv:1309.4196. Google Scholar
- 30. N. C. Phillips, Crossed products of operator algebras and the -theory of Cuntz algebras on spaces, preprint (2013), arXiv:1309.6406. Google Scholar
- 31. N. C. Phillips and D. P. Blecher, operator algebras with approximate identities I, preprint (2018), arXiv:1802.04424. Google Scholar
- 32. N. C. Phillips and M. G. Viola, Classification of AF algebras, preprint (2017), arXiv:1707.09257. Google Scholar
- 33. , On the localization algebra of Guoliang Yu, Forum Math. 22 (2010) 657–665. Crossref, Google Scholar
- 34. , An index theorem on open manifolds I, J. Differential Geom. 27 (1988) 87–113. Crossref, Google Scholar
- 35. , Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), https://bookstore.ams.org/memo-104-497/. Google Scholar
- 36. , Comparing analytic assembly maps, Q. J. Math. 53 (2002) 241–248. Crossref, Google Scholar
- 37. , Nuclear dimension, -stability, and algebraic simplicity for stably projectionless -algebras, Math. Ann. 358 (2014) 729–778. Crossref, Google Scholar
- 38. , Quasidiagonality of nuclear -algebras, Ann. of Math. 185 (2017) 229–284. Crossref, Google Scholar
- 39. , La conjecture de Baum–Connes pour les feuilletages moyennables, K-Theory 17 (1999) 215–264. Google Scholar
- 40. , The nuclear dimension of -algebras, Adv. Math. 224 (2010) 461–498. Crossref, Google Scholar
- 41. , Localization algebras and the coarse Baum–Connes conjecture, K-Theory 11 (1997) 307–318. Google Scholar
- 42. , The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147 (1998) 325–355. Crossref, Google Scholar
- 43. ,
Quantitative -theory for geometric operator algebras , in K-Theory for Group C∗-Algebras and Semigroup C∗-Algebras,Oberwolfach Seminars , Vol. 47 (Birkhäuser, 2017). Crossref, Google Scholar