World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

TWO TYPES OF CONDITION FOR THE GLOBAL STABILITY OF DELAYED SIS EPIDEMIC MODELS WITH NONLINEAR BIRTH RATE AND DISEASE INDUCED DEATH RATE

    https://doi.org/10.1142/S1793524511001507Cited by:0 (Source: Crossref)

    We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol.39(4) (1999) 332–352. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals. By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study the model with two specific birth rate functions B1(N) = be-aN and B3(N) = A/N + c, where N denotes the total population. For each model, we obtain the disease induced death rate which guarantees the global stability of the endemic equilibrium and this gives a positive answer for an open problem by X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl.257(2) (2001) 282–291.

    References


    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!