Electrical Resistive Spiking of Fungi
Abstract
We study long-term electrical resistance dynamics in mycelium and fruit bodies of oyster fungi P. ostreatus. A nearly homogeneous sheet of mycelium on the surface of a growth substrate exhibits trains of resistance spikes. The average width of spikes is c. 23min and the average amplitude is c. 1k. The distance between neighboring spikes in a train of spikes is c. 30min. Typically, there are 4–6 spikes in a train of spikes. Two types of electrical resistance spikes trains are found in fruit bodies: low frequency and high amplitude (28min spike width, 1.6k amplitude, 57min distance between spikes) and high frequency and low amplitude (10min width, 0.6k amplitude, 44min distance between spikes). The findings could be applied in monitoring of physiological states of fungi and future development of living electronic devices and sensors.
References
- 1. , Amer. J. Physiol. Legacy Content 60(1), 59 (1922). Crossref, Google Scholar
- 2. , Circul. Res. 4(6), 664 (1956). Crossref, ISI, Google Scholar
- 3. , Physiol. Meas. 16(3A), A1 (1995). Crossref, Google Scholar
- 4. , Ann. Biomed. Eng. 22(3), 328 (1994). Crossref, ISI, Google Scholar
- 5. , J. Electrostat. 66(3–4), 165 (2008). Crossref, ISI, Google Scholar
- 6. , Bioelectrochem. Bioenerg. 45(2), 145 (1998). Crossref, ISI, Google Scholar
- 7. , Canad. J. Forest Res. 2(1), 54 (1972). Crossref, Google Scholar
- 8. , Near Surf. Geophys. 4(3), 179 (2006). Crossref, ISI, Google Scholar
- 9. , Canad. J. Botany 39(7), 1585 (1961). Crossref, Google Scholar
- 10. , Canad. J. Plant Sci. 72(2), 545 (1992). Crossref, ISI, Google Scholar
- 11. , Med. Biol. Eng. Comput. 38(1), 26 (2000). Crossref, ISI, Google Scholar
- 12. , The Fungi (Gulf Professional Publishing, 2001). Google Scholar
- 13. , Nature Rev. Microbiol. 5(1), 57 (2007). Crossref, ISI, Google Scholar
- 14. , New Phytol. 155(1), 173 (2002). Crossref, ISI, Google Scholar
- 15. , Nature 436(7051), 647 (2005). Crossref, ISI, Google Scholar
- 16. , FEMS Microbiol. Lett. 193(2), 207 (2000). Crossref, ISI, Google Scholar
- 17. , Curr. Opin. Microbiol. 9(6), 572 (2006). Crossref, ISI, Google Scholar
- 18. , Cell 133(3), 387 (2008). Crossref, ISI, Google Scholar
- 19. A. Adamatzky ed., Advances in Physarum Machines: Sensing and Computing with Slime Mould (Springer, 2016). Crossref, Google Scholar
- 20. , Biosystems 147, 28 (2016). Crossref, ISI, Google Scholar
- 21. , Nano LIFE 6(1), 1650001 (2016). Link, Google Scholar
- 22. , Int. J. General Syst. 44(3), 341 (2015). Crossref, ISI, Google Scholar
- 23. , APL Mater. 3(1), 014909 (2015). Crossref, Google Scholar
- 24. , Appl. Surf. Sci. 435, 1344 (2018). Crossref, ISI, Google Scholar
- 25. , BioNanoScience 4(1), 92 (2014). Crossref, Google Scholar
- 26. A. E. Beasley, M.-S. Abdelouahab, R. Lozi, A. L. Powell and A. Adamatzky, arXiv:2005.10500. Google Scholar
- 27. A. E. Beasley, A. L. Powell and A. Adamatzky, arXiv:2003.07816. Google Scholar
- 28. , Environ. Microbiol. 14, 589 (2020). Google Scholar
- 29. , The Art of Electronics (Cambridge University Press, 1980). Google Scholar
- 30. , New Phytol. 55(2), 164 (1956). Crossref, Google Scholar
- 31. , Sci. Rep. 8(1), 1 (2018). Crossref, Google Scholar
- 32. , Mycorrhiza 19(8), 535 (2009). Crossref, ISI, Google Scholar
- 33. , Mater. Today 17(2), 86 (2014). Crossref, ISI, Google Scholar
- 34. , Int. J. Unconv. Comput. 14, 397 (2019). ISI, Google Scholar
- 35. , Biomed. Eng. Lett. 6(2), 57 (2016). Crossref, ISI, Google Scholar
- 36. , Sci. Rep. 6, 23924 (2016). Crossref, Google Scholar
- 37. , IEEE Trans. Circuits Syst. I: Reg. Pap. 64(6), 1552 (2017). Crossref, ISI, Google Scholar
- 38. , Int. J. Unconv. Comput. 11, 449 (2015). ISI, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these 2021 Life Sciences Catalogue today. |