World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Numbers of the form kf(k)

    https://doi.org/10.1142/S1793042123500586Cited by:0 (Source: Crossref)

    For a function f:, define Nf×(x)=#{nx:n=kf(k) for some k}. Let τ(n)=d|n1 be the divisor function, ω(n)=p|n1 be the prime divisor function, and φ(n)=#{1kn:(k,n)=1} be Euler’s totient function. We prove that

    (1)Nτ×(x)x(logx)1/2;(2)Nω×(x)=(1+o(1))xloglogx;(3)Nφ×(x)=(c0+o(1))x1/2,
    where c0=1.365.

    AMSC: 11N37, 11N64, 11B83

    References

    • 1. R. Balasubramanian and K. Ramachandra , On the number of integers n such that nd(n) x, Acta Arith. 49 (1988) 313–322. Crossref, Web of ScienceGoogle Scholar
    • 2. P. Bateman , The distribution of values of the Euler function, Acta Arith. 21 (1972) 329–345. CrossrefGoogle Scholar
    • 3. M. Balazard and G. Tenenbaum , Sur la répartition des valeurs de la fonction d’Euler, Compos. Math. 110(2) (1998) 239–250. Crossref, Web of ScienceGoogle Scholar
    • 4. P. Erdős and L. Mirsky , The distribution of values of the divisor function d(n), Proc. London Math. Soc. s3-2 (1952) 257–271. CrossrefGoogle Scholar
    • 5. K. Ford , The distribution of totients, Ramanujan J. 2 (1998) 67–151. Crossref, Web of ScienceGoogle Scholar
    • 6. G. H. Hardy and S. Ramanujan , The normal number of prime factors of a number n, Q. J. Math. 48 (1917) 76–92. Google Scholar
    • 7. R. Hall and G. Tenenbaum , Divisors, Cambridge Tracts in Mathematics, Vol. 90 (Cambridge University Press, 1988). CrossrefGoogle Scholar
    • 8. N. M. Korobov , Estimates of trigonometric sums and their applications, Uspekhi Mat. Nauk 13 (1958) 185–192 (Russian). Google Scholar
    • 9. A. A. Karatsuba and S. M. Voronin , The Riemann Zeta-Function (Walter de Gruyter, 1992). CrossrefGoogle Scholar
    • 10. F. Luca and A. Sankaranarayanan , The distribution of integers n divisible by lω(n), Publ. Inst. Math. (Beograd) (N.S.) 76(90) (2004) 89–99. CrossrefGoogle Scholar
    • 11. H. Maier and C. Pomerance , On the number of distinct values of Euler’s φ-function, Acta Arith. 49 (1988) 263–275. Crossref, Web of ScienceGoogle Scholar
    • 12. M. R. Murty , Problems in Analytic Number Theory, 2nd edn. (Springer, 2008). Google Scholar
    • 13. G. Tenenbaum , Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, Vol. 163, 3rd edn. (American Mathematical Society, 2015). CrossrefGoogle Scholar
    • 14. I. M. Vinogradov , A new estimate for ζ(1 + it), Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958) 161–164 (Russian). Google Scholar