World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Substitutive number systems by:0 (Source: Crossref)

    In this paper, we associate a primitive substitution with a family of non-integer positional number systems with respect to the same base but with different sets of digits. In this way, we generalize the classical Dumont–Thomas numeration which corresponds to one specific case. Therefore, our concept also covers beta-expansions induced by Parry numbers. But we establish links to variants of beta-expansions such as symmetric beta-expansions, too. In other words, we unify several well-known notions of non-integer representations within one general framework. A focus in our research is set on finiteness and periodicity properties. It turns out that these characteristics mainly depend on the substitution. As a consequence we are able to relate known finiteness properties that are viewed independently yet.

    AMSC: 11A63, 37B10, 68R15, 11R06


    • 1. S. Akiyama , Cubic Pisot units with finite beta expansions, in Algebraic Number Theory and Diophantine Analysis. Proceedings of the International Conference, Graz, Austria, August 30–September 5, 1998 (Walter de Gruyter Berlin, 2000), pp. 11–26. CrossrefGoogle Scholar
    • 2. S. Akiyama , On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54(2) (2002) 283–308. Crossref, ISIGoogle Scholar
    • 3. S. Akiyama and B. Loridant , Boundary parametrization of planar self-affine tiles with collinear digit set, Sci. China, Math. 53(9) (2010) 2173–2194. Crossref, ISIGoogle Scholar
    • 4. S. Akiyama and B. Loridant , Boundary parametrization of self-affine tiles, J. Math. Soc. Japan 63(2) (2011) 525–579. Crossref, ISIGoogle Scholar
    • 5. S. Akiyama and B. Loridant , Boundary parametrization and the topology of tiles, Nagoya Math. J. 226 (2017) 127–164. Crossref, ISIGoogle Scholar
    • 6. S. Akiyama, H. Rao and W. Steiner , A certain finiteness property of Pisot number systems, J. Number Theory 107(1) (2004) 135–160. Crossref, ISIGoogle Scholar
    • 7. S. Akiyama and K. Scheicher , Symmetric shift radix systems and finite expansions, Math. Pannon. 18(1) (2007) 101–124. Google Scholar
    • 8. P. Arnoux, V. Berthé, A. Hilion and A. Siegel , Fractal representation of the attractive lamination of an automorphism of the free group, Ann. Inst. Fourier (Grenoble) 56(7) (2006) 2161–2212. Crossref, ISIGoogle Scholar
    • 9. G. Barat, V. Berthé, P. Liardet and J. Thuswaldner , Dynamical directions in numeration, Ann. Inst. Fourier (Grenoble) 56(7) (2006) 1987–2092. Crossref, ISIGoogle Scholar
    • 10. M. Barge and J. Kwapisz , Elements of the theory of unimodular Pisot substitutions with an application to β-shifts, in Algebraic and Topological Dynamics. Proceedings of the Conference, Bonn, Germany, May 1–July 31, 2004, American Mathematical Society (AMS Providence, RI, 2005), pp. 89–99. CrossrefGoogle Scholar
    • 11. V. Berthé and A. Siegel , Tilings associated with beta-numeration and substitutions, Integers 5(3) (2005) A2, 46 pp. Google Scholar
    • 12. A. Bertrand , Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B 285(6) (1977) A419–A421. ISIGoogle Scholar
    • 13. A. Bertrand-Mathis , Développement en base 𝜃, répartition modulo un de la suite (x𝜃n), n 0, langages codes et 𝜃-shift. (Expansion in base 𝜃, uniform distribution of the sequence (x𝜃n), n 0, coding languages and 𝜃-shift), Bull. Soc. Math. Fr., 114 (1986) 271–323. CrossrefGoogle Scholar
    • 14. F. Blanchard , β-expansions and symbolic dynamics, Theor. Comput. Sci. 65(2) (1989) 131–141. Crossref, ISIGoogle Scholar
    • 15. V. Canterini and A. Siegel , Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13(2) (2001) 353–369. CrossrefGoogle Scholar
    • 16. J.-M. Dumont and A. Thomas , Systemes de numeration et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65(2) (1989) 153–169. Crossref, ISIGoogle Scholar
    • 17. S. Fabre , Substitutions et β-systèmes de numération, Theoret. Comput. Sci. 137(2) (1995) 219–236. Crossref, ISIGoogle Scholar
    • 18. C. Frougny and J. Sakarovitch , Number representation and finite automata, in Combinatorics, Automata, and Number Theory (Cambridge University Press Cambridge, 2010), pp. 34–107. CrossrefGoogle Scholar
    • 19. C. Frougny and B. Solomyak , Finite beta-expansions, Ergodic Theory Dynam. Systems 12(4) (1992) 713–723. Crossref, ISIGoogle Scholar
    • 20. T. Hejda , Multiple tilings associated to d-Bonacci beta-expansions, Monatsh. Math. 187(2) (2018) 275–291. Crossref, ISIGoogle Scholar
    • 21. M. Hollander, Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems, PhD thesis, Washington University, Seattle (1996). Google Scholar
    • 22. A. Huszti, K. Scheicher, P. Surer and J. M. Thuswaldner , Three-dimensional symmetric shift radix systems, Acta Arith. 129(2) (2007) 147–166. Crossref, ISIGoogle Scholar
    • 23. C. Kalle and W. Steiner , Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Am. Math. Soc. 364(5) (2012) 2281–2318. Crossref, ISIGoogle Scholar
    • 24. P. Kirschenhofer and J. M. Thuswaldner , Shift radix systems – a survey, RIMS Kôkyûroku Bessatsu 46 (2014) 1–59. Google Scholar
    • 25. D. Lind and B. Marcus , An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, Cambridge, 1995). CrossrefGoogle Scholar
    • 26. B. Loridant , Topological properties of a class of cubic Rauzy fractals, Osaka J. Math. 53(1) (2016) 161–219. ISIGoogle Scholar
    • 27. B. Loridant and M. Minervino , Geometrical models for a class of reducible Pisot substitutions, Discrete Comput. Geom. 60(4) (2018) 981–1028. Crossref, ISIGoogle Scholar
    • 28. R. Mauldin and S. Williams , Hausdorff dimension in graph directed constructions, Trans. Am. Math. Soc. 309(2) (1988) 811–829. Crossref, ISIGoogle Scholar
    • 29. M. Minervino and J. Thuswaldner , Géométrie des substitutions de type Pisot non unimodulaires, Ann. Inst. Fourier 64(4) (2014) 1373–1417. Crossref, ISIGoogle Scholar
    • 30. W. Parry , On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416. CrossrefGoogle Scholar
    • 31. B. Praggastis , Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351(8) (1999) 3315–3349. Crossref, ISIGoogle Scholar
    • 32. A. Rényi , Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957) 477–493. CrossrefGoogle Scholar
    • 33. K. Schmidt , On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12(4) (1980) 269–278. CrossrefGoogle Scholar
    • 34. T. Sellami , Common dynamics of two Pisot substitutions with the same incidence matrix, Publ. Math. 81(1–2) (2012) 41–63. Google Scholar
    • 35. A. Siegel and J. M. Thuswaldner , Topological properties of Rauzy fractals, Mém. Soc. Math. Fr., Nouv. Sér. 118 (2009) 140. Google Scholar
    • 36. B. Sing and V. F. Sirvent . Geometry of the common dynamics of flipped Pisot substitutions. Monatsh. Math., 155(3-4) :431–448, 2008. Crossref, ISIGoogle Scholar
    • 37. V. F. Sirvent , The common dynamics of the Tribonacci substitutions, Bull. Belg. Math. Soc. Simon Stevin 7(4) (2000) 571–582. Crossref, ISIGoogle Scholar
    • 38. B. Solomyak , Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. Lond. Math. Soc. (3) 68(3) (1994) 477–498. CrossrefGoogle Scholar
    • 39. P. Surer , 𝜀-shift radix systems and radix representations with shifted digit sets, Publ. Math. (Debrecen) 74 (2009) 19–43. Crossref, ISIGoogle Scholar
    • 40. P. Surer , Coding of substitution dynamical systems as shifts of finite type, Ergodic Theory Dyn. Syst. 36(3) (2016) 944–972. Crossref, ISIGoogle Scholar
    • 41. P. Surer , Substitutions, coding prescriptions and integer representation, J. Number Theory 190 (2018) 367–393. Crossref, ISIGoogle Scholar
    • 42. W. Thurston , Groups, tilings and finite state automata, (AMS Colloquium, 1989). Google Scholar
    • 43. H. Wielandt , Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950) 642–648. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue