World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

On asymptotic behavior of Dirichlet inverse

    https://doi.org/10.1142/S1793042120500700Cited by:1 (Source: Crossref)

    Let f(n) be an arithmetic function with f(1)0 and let f1(n) be its reciprocal with respect to the Dirichlet convolution. We study the asymptotic behavior of |f1(n)| with regard to the asymptotic behavior of |f(n)| assuming that the latter one grows or decays with at most polynomial or exponential speed. As a by-product, we obtain simple but constructive upper bounds for the number of ordered factorizations of n into k factors.

    AMSC: 11A25, 11N37, 11N56, 05A16, 05A17

    References

    • 1. T. M. Apostol, Introduction to Analytic Number Theory (Springer-Verlag, New York, 1976). CrossrefGoogle Scholar
    • 2. P. Binding, L. Boulton, J. Čepička, P. Drábek and P. Girg, Basis properties of eigenfunctions of the p-Laplacian, Proc. Amer. Math. Soc. 134(12) (2006) 3487–3494. Crossref, Web of ScienceGoogle Scholar
    • 3. B. Chor, P. Lemke and Z. Mador, On the number of ordered factorizations of natural numbers, Discrete Math. 214(1–3) (2000) 123–133. Crossref, Web of ScienceGoogle Scholar
    • 4. D. Coppersmith and M. Lewenstein, Constructive bounds on ordered factorizations, SIAM J. Discrete Math. 19(2) (2005) 301–303. Crossref, Web of ScienceGoogle Scholar
    • 5. P. Haukkanen, On the real powers of completely multiplicative arithmetical functions, Nieuw Arch. Wiskd. 15(1–2) (1997) 73–78. Google Scholar
    • 6. P. Haukkanen, Expressions for the Dirichlet inverse of arithmetical functions, Notes Number Theory Discrete Math. 6(4) (2000) 118–124. Google Scholar
    • 7. H. Hedenmalm, P. Lindqvist and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1), Duke Math. J. 86(1) (1997) 1–37. Crossref, Web of ScienceGoogle Scholar
    • 8. H. Hedenmalm, P. Lindqvist and K. Seip, Addendum to “A Hilbert space of Dirichlet series and systems of dilated functions in L2(0,1), Duke Math. J. 99(1) (1999) 175–178. CrossrefGoogle Scholar
    • 9. E. Hille, A problem in “Factorisatio Numerorum”, Acta Arith. 2(1) (1936) 134–144. CrossrefGoogle Scholar
    • 10. H. K. Hwang and S. Janson, A central limit theorem for random ordered factorizations of integers, Electron. J. Probab. 16 (2011) 347–361. Crossref, Web of ScienceGoogle Scholar
    • 11. A. E. Ingham, Some Tauberian theorems connected with the prime number theorem, J. London Math. Soc. 1(3) (1945) 171–180. CrossrefGoogle Scholar
    • 12. R. Jakimczuk, Sum of prime factors in the prime factorization of an integer, Int. Math. Forum 7(53–56) (2012) 2617–2621. Google Scholar
    • 13. K. A. Jukes, On the Ingham and (D,h(n)) summation methods, J. London Math. Soc. 2(4) (1971) 699–710. CrossrefGoogle Scholar
    • 14. J. Kaczorowski and A. Perelli, On the prime number theorem for the Selberg class, Arch. Math. 80(3) (2003) 255–263. Web of ScienceGoogle Scholar
    • 15. L. Kalmár, A “factorisatio numerorum” problémájáról, Mat. Fiz. Lapok 38 (1931) 1–15. Google Scholar
    • 16. A. Knopfmacher and M. E. Mays, A survey of factorization counting functions, Int. J. Number Theory 1(4) (2005) 563–581. Link, Web of ScienceGoogle Scholar
    • 17. H. W. Kuhn and A. W. Tucker, Nonlinear Programming, in Proc. Second Berkeley Symp. Mathematical Statistics and Probability, 1950 (University of California Press, Berkeley, California, 1951), pp. 481–492. Google Scholar
    • 18. S. L. Segal, Summability by Dirichlet convolutions, Proc. Cambridge Philos. Soc. 63(2) (1967) 393–400, Erratum 65(1) (1969) 369. CrossrefGoogle Scholar
    • 19. S. L. Segal, Prime number theorem analogues without primes, J. Reine Angew. Math. 265 (1974) 1–22. Web of ScienceGoogle Scholar
    • 20. A. Sowa, The Dirichlet ring and unconditional bases in L2[0,2π], Funct. Anal. Appl. 47(3) (2013) 227–232. Crossref, Web of ScienceGoogle Scholar
    • 21. J. Sprittulla, Ordered factorizations with k factors, preprint (2016), arXiv:1610.04826 (2016). Google Scholar
    • 22. A. Wintner, Eratosthenian Averages (Waverly Press, Baltimore, 1943). Google Scholar
    • 23. A. Wintner, On Töpler’s wave analysis, Amer. J. Math. 69(4) (1947) 758–768. Crossref, Web of ScienceGoogle Scholar