World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A generalization of the subspace theorem for higher degree polynomials in subgeneral position

    https://doi.org/10.1142/S1793042119500404Cited by:11 (Source: Crossref)

    In this paper, we prove a generalization of Schmidt’s subspace theorem for polynomials of higher degree in subgeneral position with respect to a projective variety over a number field. Our result improves and generalizes the previous results on Schmidt’s subspace theorem for the case of higher degree polynomials.

    AMSC: 11J68, 11J25, 11J97

    References

    • 1. H. Cartan, Sur les zéroes des combinaisons linéaries de p fonctions holomorphes données, Mathematica 7 (1933) 80–103. Google Scholar
    • 2. Z. Chen, M. Ru and Q. Yan, The degenerated second main theorem and Schmidts subspace theorem, Sci. China Math. 55 (2012) 1367–1380. Web of ScienceGoogle Scholar
    • 3. P. Corvaja and U. Zannier, On a general Thue’s equation, Amer. J. Math. 126 (2004) 1033–1055. Web of ScienceGoogle Scholar
    • 4. J. Evertse and R. Ferretti, Diophantine inequalities on projective varieties, Int. Math. Res. Not. 25 (2002) 1295–1330. Google Scholar
    • 5. J. Evertse and R. Ferretti, A Generalization of the Subspace Theorem with Polynomials of Higher Degree, Developments in Mathematics, Vol. 16 (Springer, New York, 2008), pp. 175–198. Google Scholar
    • 6. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52 (Springer, New York, 1977). Google Scholar
    • 7. A. Levin, On the Schmitd subspace theorem for algebraic points, Duke Math. J. 263 (2014) 2841–2885. Web of ScienceGoogle Scholar
    • 8. E. I. Nochka, On the theory of meromorphic functions, Sov. Math. Dokl. 27 (1983) 377–381. Google Scholar
    • 9. C. F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian J. Math. 23 (1981) 1–15. Google Scholar
    • 10. C. F. Osgood, Sometimes effective Thue–Siegel–Roth–Schmidt–Nevanlinna bounds, or better, J. Number Theory 21 (1985) 347–389. Web of ScienceGoogle Scholar
    • 11. S. D. Quang, Schmidts subspace theorem for moving hypersurfaces, Int. J. Number Theory 14 (2018) 103–121. Link, Web of ScienceGoogle Scholar
    • 12. S. D. Quang, Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces, Trans. American Math. Soc. 371(4) (2019) 2431–2453; https://doi.org/10.1090/tran/7433. Web of ScienceGoogle Scholar
    • 13. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955) 1–20. Google Scholar
    • 14. M. Ru and P. M. Wong, Integral points of n-{2n + 1 hyperplanes in general position}, Invent. Math. 106 (1991) 195–216. Web of ScienceGoogle Scholar
    • 15. H. P. Schlickewei, The p-adic Thue–Siegel–Roth–Schmidt theorem, Arch. Math. 29 (1977) 267–270. Web of ScienceGoogle Scholar
    • 16. W. M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970) 189–201. Web of ScienceGoogle Scholar
    • 17. W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972) 526–551. Web of ScienceGoogle Scholar
    • 18. W. M. Schmidt, Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math. 79 (1975) 55–66. Web of ScienceGoogle Scholar
    • 19. W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, Vol. 785 (Springer, New York, 1980). Google Scholar
    • 20. P. Vojta, Diophantine Approximation and Value Distribution Theory, Lecture Notes in Mathematics, Vol. 1239 (Springer, Berlin, 1987). Google Scholar
    • 21. P. Vojta, A refinement of Schmidts subspace theorem, Amer. J. Math. 111 (1989) 489–518. Web of ScienceGoogle Scholar
    • 22. E. A. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in 1969 Number Theory Institute, Proceedings of Symposia in Pure Mathematics, Vol. 20 (American Mathematical Society, Providence, RI, 1971), pp. 213–247. Google Scholar