Algebraic independence of the values of the Hecke–Mahler series and its derivatives at algebraic numbers
Abstract
We show that the Hecke–Mahler series, the generating function of the sequence for real, has the following property: Its values and its derivatives of any order, at any nonzero distinct algebraic numbers inside the unit circle, are algebraically independent if is a quadratic irrational number satisfying a suitable condition.
References
- 1. , Algebraic independence by a method of Mahler, J. Aust. Math. Soc. Ser. A 27 (1979) 173–188. Crossref, Google Scholar
- 2. , Applications of the Theory of Matrices (Interscience, 1959). Google Scholar
- 3. , Über analytische Funktionen und die Verteilung von Zahlen mod Eines, Abh. Math. Sem. Hamburg 1 (1921) 54–76. Crossref, Google Scholar
- 4. , Arithmetic properties of certain functions in several variables III, Bull. Aust. Math. Soc. 16 (1977) 15–47. Crossref, Google Scholar
- 5. , Algebraic independence properties of the Fredholm series, J. Aust. Math. Soc. Ser. A 26 (1978) 31–45. Crossref, Google Scholar
- 6. , Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929) 342–366. Crossref, Google Scholar
- 7. , Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930) 545–585. Crossref, Google Scholar
- 8. , A vanishing theorem for power series, Invent. Math. 67 (1982) 275–296. Crossref, Web of Science, Google Scholar
- 9. , Algebraic independence properties of the Hecke–Mahler series, Q. J. Math. 50 (1999) 207–230. Crossref, Web of Science, Google Scholar
- 10. , Evertse theorem in algebraic independence, Arch. Math. 53 (1989) 159–170. Crossref, Web of Science, Google Scholar
- 11. , Note on a paper by Mahler, Tsukuba J. Math. 17 (1993) 455–459. Crossref, Google Scholar
- 12. , Algebraic independence of Mahler functions and their values, Tohoku Math. J. 48 (1996) 51–70. Crossref, Web of Science, Google Scholar
- 13. , Mahler Functions and Transcendence,
Lecture Notes in Mathematics , Vol. 1631 (Springer, 1996). Crossref, Google Scholar - 14. , Continued Fractions (World Scientific, 1992). Link, Google Scholar