World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Algebraic independence of the values of the Hecke–Mahler series and its derivatives at algebraic numbers

    https://doi.org/10.1142/S1793042118501440Cited by:1 (Source: Crossref)

    We show that the Hecke–Mahler series, the generating function of the sequence {[nω]}n=1 for ω real, has the following property: Its values and its derivatives of any order, at any nonzero distinct algebraic numbers inside the unit circle, are algebraically independent if ω is a quadratic irrational number satisfying a suitable condition.

    AMSC: 11J85, 11J91

    References

    • 1. Y. Z. Flicker, Algebraic independence by a method of Mahler, J. Aust. Math. Soc. Ser. A 27 (1979) 173–188. CrossrefGoogle Scholar
    • 2. F. R. Gantmacher, Applications of the Theory of Matrices (Interscience, 1959). Google Scholar
    • 3. E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod Eines, Abh. Math. Sem. Hamburg 1 (1921) 54–76. CrossrefGoogle Scholar
    • 4. J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables III, Bull. Aust. Math. Soc. 16 (1977) 15–47. CrossrefGoogle Scholar
    • 5. J. H. Loxton and A. J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Aust. Math. Soc. Ser. A 26 (1978) 31–45. CrossrefGoogle Scholar
    • 6. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929) 342–366. CrossrefGoogle Scholar
    • 7. K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930) 545–585. CrossrefGoogle Scholar
    • 8. D. W. Masser, A vanishing theorem for power series, Invent. Math. 67 (1982) 275–296. Crossref, Web of ScienceGoogle Scholar
    • 9. D. W. Masser, Algebraic independence properties of the Hecke–Mahler series, Q. J. Math. 50 (1999) 207–230. Crossref, Web of ScienceGoogle Scholar
    • 10. K. Nishioka, Evertse theorem in algebraic independence, Arch. Math. 53 (1989) 159–170. Crossref, Web of ScienceGoogle Scholar
    • 11. K. Nishioka, Note on a paper by Mahler, Tsukuba J. Math. 17 (1993) 455–459. CrossrefGoogle Scholar
    • 12. K. Nishioka, Algebraic independence of Mahler functions and their values, Tohoku Math. J. 48 (1996) 51–70. Crossref, Web of ScienceGoogle Scholar
    • 13. K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, Vol. 1631 (Springer, 1996). CrossrefGoogle Scholar
    • 14. A. M. Rockett and P. Szüsz, Continued Fractions (World Scientific, 1992). LinkGoogle Scholar