Siegel paramodular forms of weight 2 and squarefree level
Abstract
We compute the space of weight 2 Siegel paramodular cusp forms of squarefree level . In conformance with the paramodular conjecture of Brumer and Kramer, the space is only the additive (Gritsenko) lift space of the Jacobi cusp form space except for , when it further contains one nonlift newform. For these two values of , the Hasse–Weil -Euler factors of a relevant abelian surface match the spin -Euler factors of the nonlift newform for the first two primes .
References
- 1. , Introduction to Siegel Modular Forms and Dirichlet Series, Universitext (Springer, New York, 2009). Crossref, Google Scholar
- 2. , Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53(3) (2016) 645–689. Crossref, Web of Science, Google Scholar
- 3. , Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366(5) (2014) 2463–2516. Crossref, Web of Science, Google Scholar
- 4. , The Theory of Jacobi Forms,
Progress in Mathematics , Vol. 55 (Birkhäuser, Boston, MA, 1985). Crossref, Google Scholar - 5. V. A. Gritsenko, 24 faces of the Borcherds modular form , preprint (2012); arXiv:1203.6503. Google Scholar
- 6. , Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123(3) (1998) 461–485. Crossref, Web of Science, Google Scholar
- 7. , Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras, Amer. J. Math. 119(1) (1997) 181–224. Crossref, Web of Science, Google Scholar
- 8. , Automorphic forms and Lorentzian Kac–Moody algebras. II, Internat. J. Math. 9(2) (1998) 201–275. Link, Web of Science, Google Scholar
- 9. , Borcherds products everywhere, J. Number Theory 148 (2015) 164–195. Crossref, Web of Science, Google Scholar
- 10. V. A. Gritsenko, C. Poor and D. S. Yuen, Antisymmetric paramodular forms of weights 2 and 3, preprint (2016); https://arXiv.org/abs/1609.04146. Google Scholar
- 11. V. A. Gritsenko, N.-P. Skoruppa and D. Zagier, Theta blocks, in preparation. Google Scholar
- 12. ,
On relations of dimensions of automorphic forms of and its compact twist Sp(2). I , in Automorphic Forms and Number Theory,Advanced Studies in Pure Mathematics , Vol. 7 (North-Holland, Amsterdam, 1985), pp. 7–30. Crossref, Google Scholar - 13. , On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40(2) (1993) 245–283. Google Scholar
- 14. , Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian varieties, in Siegel Modular Forms and Abelian Varieties, Proc. 4th Spring Conf. Modular Forms and Related Topics (2007), pp. 39–60. Google Scholar
- 15. , Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69(2) (2017) 597–671. Crossref, Web of Science, Google Scholar
- 16. , Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hamburg. 83(1) (2013) 111–128. Crossref, Web of Science, Google Scholar
- 17. C. Poor, R. Schmidt and D. S. Yuen, Paramodular forms of level 8 and weights 10 and 12, to appear in Internat. J. Number Theory.. Google Scholar
- 18. C. Poor, J. Shurman and D. S. Yuen, Constructing paramodular nonlift newforms via Borcherds products, in preparation. Google Scholar
- 19. C. Poor, J. Shurman and D. S. Yuen, Finding all Borcherds products of a given weight and level, in preparation. Google Scholar
- 20. , The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50(2) (2013) 445–464. Crossref, Web of Science, Google Scholar
- 21. , Paramodular cusp forms, Math. Comp. 84(293) (2015) 1401–1438. Crossref, Web of Science, Google Scholar
- 22. H. Reefschläger, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades, Ph.D. thesis, Georg-August-Universität zu Göttingen (1973). Google Scholar
- 23. , Local Newforms for GSp(4),
Lecture Notes in Mathematics , Vol. 1918 (Springer, Berlin, 2007). Crossref, Google Scholar - 24. , A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989) 168–198. Web of Science, Google Scholar
- 25. D. S. Yuen, Modularity of the abelian surface of conductor 277 (2015); https://icerm.brown.edu/video_archive/#/play/779. Google Scholar
- 26. D. S. Yuen, Degree 2 Siegel paramodular forms of weight 2 and squarefree composite level (2016); http://siegelmodularforms.org/pages/degree2/paramodular-wt2-sqfree/. Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out new Number Theory books in our Mathematics 2021 catalogue |