World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Siegel paramodular forms of weight 2 and squarefree level

    https://doi.org/10.1142/S1793042117501469Cited by:7 (Source: Crossref)

    We compute the space S2(K(N)) of weight 2 Siegel paramodular cusp forms of squarefree level N<300. In conformance with the paramodular conjecture of Brumer and Kramer, the space is only the additive (Gritsenko) lift space of the Jacobi cusp form space J2,Ncusp except for N=249,295, when it further contains one nonlift newform. For these two values of N, the Hasse–Weil p-Euler factors of a relevant abelian surface match the spin p-Euler factors of the nonlift newform for the first two primes pN.

    AMSC: 11F46, 11F55, 11F30, 11F50

    References

    • 1. A. Andrianov, Introduction to Siegel Modular Forms and Dirichlet Series, Universitext (Springer, New York, 2009). CrossrefGoogle Scholar
    • 2. J. Breeding II, C. Poor and D. S. Yuen, Computations of spaces of paramodular forms of general level, J. Korean Math. Soc. 53(3) (2016) 645–689. Crossref, Web of ScienceGoogle Scholar
    • 3. A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366(5) (2014) 2463–2516. Crossref, Web of ScienceGoogle Scholar
    • 4. M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, Vol. 55 (Birkhäuser, Boston, MA, 1985). CrossrefGoogle Scholar
    • 5. V. A. Gritsenko, 24 faces of the Borcherds modular form ϕ12, preprint (2012); arXiv:1203.6503. Google Scholar
    • 6. V. A. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123(3) (1998) 461–485. Crossref, Web of ScienceGoogle Scholar
    • 7. V. A. Gritsenko and V. V. Nikulin, Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras, Amer. J. Math. 119(1) (1997) 181–224. Crossref, Web of ScienceGoogle Scholar
    • 8. V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac–Moody algebras. II, Internat. J. Math. 9(2) (1998) 201–275. Link, Web of ScienceGoogle Scholar
    • 9. V. A. Gritsenko, C. Poor and D. S. Yuen, Borcherds products everywhere, J. Number Theory 148 (2015) 164–195. Crossref, Web of ScienceGoogle Scholar
    • 10. V. A. Gritsenko, C. Poor and D. S. Yuen, Antisymmetric paramodular forms of weights 2 and 3, preprint (2016); https://arXiv.org/abs/1609.04146. Google Scholar
    • 11. V. A. Gritsenko, N.-P. Skoruppa and D. Zagier, Theta blocks, in preparation. Google Scholar
    • 12. T. Ibukiyama, On relations of dimensions of automorphic forms of Sp(2,R) and its compact twist Sp(2). I, in Automorphic Forms and Number Theory, Advanced Studies in Pure Mathematics, Vol. 7 (North-Holland, Amsterdam, 1985), pp. 7–30. CrossrefGoogle Scholar
    • 13. T. Ibukiyama, On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40(2) (1993) 245–283. Google Scholar
    • 14. T. Ibukiyama, Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian varieties, in Siegel Modular Forms and Abelian Varieties, Proc. 4th Spring Conf. Modular Forms and Related Topics (2007), pp. 39–60. Google Scholar
    • 15. T. Ibukiyama and H. Kitayama, Dimension formulas of paramodular forms of squarefree level and comparison with inner twist, J. Math. Soc. Japan 69(2) (2017) 597–671. Crossref, Web of ScienceGoogle Scholar
    • 16. T. Ibukiyama, C. Poor and D. S. Yuen, Jacobi forms that characterize paramodular forms, Abh. Math. Semin. Univ. Hamburg. 83(1) (2013) 111–128. Crossref, Web of ScienceGoogle Scholar
    • 17. C. Poor, R. Schmidt and D. S. Yuen, Paramodular forms of level 8 and weights 10 and 12, to appear in Internat. J. Number Theory.. Google Scholar
    • 18. C. Poor, J. Shurman and D. S. Yuen, Constructing paramodular nonlift newforms via Borcherds products, in preparation. Google Scholar
    • 19. C. Poor, J. Shurman and D. S. Yuen, Finding all Borcherds products of a given weight and level, in preparation. Google Scholar
    • 20. C. Poor and D. S. Yuen, The cusp structure of the paramodular groups for degree two, J. Korean Math. Soc. 50(2) (2013) 445–464. Crossref, Web of ScienceGoogle Scholar
    • 21. C. Poor and D. S. Yuen, Paramodular cusp forms, Math. Comp. 84(293) (2015) 1401–1438. Crossref, Web of ScienceGoogle Scholar
    • 22. H. Reefschläger, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen 2-ten Grades, Ph.D. thesis, Georg-August-Universität zu Göttingen (1973). Google Scholar
    • 23. B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics, Vol. 1918 (Springer, Berlin, 2007). CrossrefGoogle Scholar
    • 24. N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989) 168–198. Web of ScienceGoogle Scholar
    • 25. D. S. Yuen, Modularity of the abelian surface of conductor 277 (2015); https://icerm.brown.edu/video_archive/#/play/779. Google Scholar
    • 26. D. S. Yuen, Degree 2 Siegel paramodular forms of weight 2 and squarefree composite level (2016); http://siegelmodularforms.org/pages/degree2/paramodular-wt2-sqfree/. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue