World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
https://doi.org/10.1142/S1793042117501019Cited by:4 (Source: Crossref)

Let Skpara(N)) be the space of Siegel paramodular forms of level N and weight k. Fix an odd prime pN and let χ be a nontrivial quadratic Dirichlet character mod p. Based on [Twisting of paramodular vectors, Int. J. Number Theory10 (2014) 1043–1065], we define a linear twisting map 𝒯χ : Skpara(N)) → Skpara(Np4)). We calculate an explicit expression for this twist, give the commutation relations of this map with the Hecke operators and Atkin–Lehner involution for primes ℓ ≠p, and prove that the L-function of the twist has the expected form.

AMSC: 11F46, 11F70

References

  • 1. M. Asgari and R. Schmidt, Siegel modular forms and representations, Manuscripta Math. 104 (2001) 173–200. Crossref, Web of ScienceGoogle Scholar
  • 2. A. Brumer and K. Kramer, Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014) 2463–2516. Crossref, Web of ScienceGoogle Scholar
  • 3. J. Cremona, Algorithms for Modular Elliptic Curves (Cambridge University Press, Cambridge, England, 1992). Google Scholar
  • 4. J. Johnson-Leung and B. Roberts, Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory 132 (2012) 543–564. Crossref, Web of ScienceGoogle Scholar
  • 5. J. Johnson-Leung and B. Roberts, Twisting of paramodular vectors, Int. J. Number Theory 10 (2014) 1043–1065. Link, Web of ScienceGoogle Scholar
  • 6. J. Johnson-Leung and B. Roberts, Fourier coefficients for twists of Siegel paramodular forms, preprint (2015); arXiv:1505.05463. Google Scholar
  • 7. A. Krieg and M. Raum, The functional equation for the twisted spinor L-series of genus 2, Abh. Math. Semin. Univ. Hamburg 83 (2013) 29–52. Crossref, Web of ScienceGoogle Scholar
  • 8. C. Poor and D. Yuen, Paramodular cusp forms, Math. Comp. 84 (2015) 1401–1438. Crossref, Web of ScienceGoogle Scholar
  • 9. B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics, Vol. 1918 (Springer, Berlin, 2007). CrossrefGoogle Scholar
  • 10. N. Ryan and G. Tornaría, A Böcherer-type conjecture for paramodular forms, Int. J. Number Theory 7 (2011) 1395–1411. Link, Web of ScienceGoogle Scholar
  • 11. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, Princeton, New Jersey, 1971). Google Scholar