Twisting of Siegel paramodular forms
Abstract
Let Sk(Γpara(N)) be the space of Siegel paramodular forms of level N and weight k. Fix an odd prime p ∤ N and let χ be a nontrivial quadratic Dirichlet character mod p. Based on [Twisting of paramodular vectors, Int. J. Number Theory10 (2014) 1043–1065], we define a linear twisting map 𝒯χ : Sk(Γpara(N)) → Sk(Γpara(Np4)). We calculate an explicit expression for this twist, give the commutation relations of this map with the Hecke operators and Atkin–Lehner involution for primes ℓ ≠p, and prove that the L-function of the twist has the expected form.
References
- 1. , Siegel modular forms and representations, Manuscripta Math. 104 (2001) 173–200. Crossref, Web of Science, Google Scholar
- 2. , Paramodular abelian varieties of odd conductor, Trans. Amer. Math. Soc. 366 (2014) 2463–2516. Crossref, Web of Science, Google Scholar
- 3. , Algorithms for Modular Elliptic Curves (Cambridge University Press, Cambridge, England, 1992). Google Scholar
- 4. , Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory 132 (2012) 543–564. Crossref, Web of Science, Google Scholar
- 5. , Twisting of paramodular vectors, Int. J. Number Theory 10 (2014) 1043–1065. Link, Web of Science, Google Scholar
- 6. J. Johnson-Leung and B. Roberts, Fourier coefficients for twists of Siegel paramodular forms, preprint (2015); arXiv:1505.05463. Google Scholar
- 7. , The functional equation for the twisted spinor -series of genus 2, Abh. Math. Semin. Univ. Hamburg 83 (2013) 29–52. Crossref, Web of Science, Google Scholar
- 8. , Paramodular cusp forms, Math. Comp. 84 (2015) 1401–1438. Crossref, Web of Science, Google Scholar
- 9. , Local Newforms for GSp(4),
Lecture Notes in Mathematics , Vol. 1918 (Springer, Berlin, 2007). Crossref, Google Scholar - 10. , A Böcherer-type conjecture for paramodular forms, Int. J. Number Theory 7 (2011) 1395–1411. Link, Web of Science, Google Scholar
- 11. , Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, Princeton, New Jersey, 1971). Google Scholar