World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the average distribution of divisors of friable numbers

    https://doi.org/10.1142/S1793042117500105Cited by:1 (Source: Crossref)

    A number is said to be y-friable if it has no prime factor greater than y. In this paper, we prove a central limit theorem on average for the distribution of divisors of y-friable numbers less than x, for all (x,y) satisfying 2ye(logx)/(loglogx)1+ε. This was previously known under the additional constraint ye(loglogx)5/3+ε, by work of Basquin. Our argument relies on the two-variable saddle-point method.

    AMSC: 11N25

    References

    • 1. K. Alladi, An Erdős–Kac theorem for integers without large prime factors, Acta Arith. 49(1) (1987) 81–105. Web of ScienceGoogle Scholar
    • 2. G. Bareikis and E. Manstavičius, On the DDT theorem, Acta Arith. 126(2) (2007) 155–168. Web of ScienceGoogle Scholar
    • 3. J. Basquin, Loi de répartition moyenne des diviseurs des entiers friables, J. Théor. Nombres Bordeaux 26(2) (2014) 281–305. Web of ScienceGoogle Scholar
    • 4. N. G. de Bruijn, On the number of positive integers x and free of prime factors > y, Nederl. Acad. Wetensch. Proc. Ser. A. 54 (1951) 50–60. Google Scholar
    • 5. R. de la Bretèche and G. Tenenbaum, Sur les lois locales de la répartition du k-ième diviseur d'un entier, Proc. London Math. Soc. 84(02) (2002) 289–323. Google Scholar
    • 6. R. de la Bretèche and G. Tenenbaum, Entiers friables: Inégalité de Turán–Kubilius et applications, Invent. Math. 159(3) (2005) 531–588. Web of ScienceGoogle Scholar
    • 7. R. de la Bretèche and G. Tenenbaum, Propriétés statistiques des entiers friables, Ramanujan J. 9(1–2) (2005) 139–202. Web of ScienceGoogle Scholar
    • 8. R. de la Bretèche and G. Tenenbaum, Entiers friables et méthode des résidus, preprint (2015). Google Scholar
    • 9. J.-M. Deshouillers, F. Dress and G. Tenenbaum, Lois de répartition des diviseurs. I, Acta Arith. 34(4) (1979) 273–285. Google Scholar
    • 10. A. Granville, Smooth numbers: Computational number theory and beyond, in Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, Mathematical Sciences Research Institute Publications, Vol. 44 (Cambridge University Press, Cambridge, 2008), pp. 267–323. Google Scholar
    • 11. A. Hildebrand, Integers free of large prime factors and the Riemann hypothesis, Mathematika 31(2) (1984) 258–271. Web of ScienceGoogle Scholar
    • 12. A. Hildebrand, On the number of positive integers x and free of prime factors > y, J. Number Theory 22(3) (1986) 289–307. Web of ScienceGoogle Scholar
    • 13. A. Hildebrand, On the number of prime factors of integers without large prime divisors, J. Number Theory 25(1) (1987) 81–106. Web of ScienceGoogle Scholar
    • 14. A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer. Math. Soc. 296(01) (1986) 265–290. Google Scholar
    • 15. A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux 5 (1993) 411–484. Google Scholar
    • 16. P. Moree, Nicolaas Govert de Bruijn, the enchanter of friable integers, Indag. Math. (N.S.) 24(4) (2013) 774–801. Web of ScienceGoogle Scholar
    • 17. P. Moree, Integers without large prime factors: From Ramanujan to de Bruijn, Integers 14A (2014) Paper No. A5, 13 pp. Google Scholar
    • 18. O. Robert and G. Tenenbaum, Sur la répartition du noyau d'un entier, Indag. Math. (N.S.) 24(4) (2013) 802–914. Web of ScienceGoogle Scholar
    • 19. É Saias, Sur le nombre des entiers sans grand facteur premier, J. Number Theory 32(1) (1989) 78–99. Web of ScienceGoogle Scholar
    • 20. H. Smida, Valeur moyenne des fonctions de Piltz sur les entiers sans grand facteur premier, Acta Arith. 63(1) (1993) 21–50. Web of ScienceGoogle Scholar
    • 21. K. Soundararajan, The distribution of smooth numbers in arithmetic progressions, in Anatomy of Integers, CRM Proceedings & Lecture Notes, Vol. 46 (American Mathematical Society, Providence, RI, 2008), pp. 115–128. Google Scholar
    • 22. G. Tenenbaum, Lois de répartition des diviseurs, 2, Acta Arith. 38(1) (1980) 1–36. Google Scholar
    • 23. G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, troisième ed., Belin (2007). Google Scholar
    • 24. G. Tenenbaum, On ultrafriable integers, Q. J. Math. 66 (2015) 333–351. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue