Newton representation of functions over natural integers having integral difference ratios
Abstract
Different questions lead to the same class of functions from natural integers to integers: those which have integral difference ratios, i.e. verifying f(a) - f(b) ≡ 0 (mod (a - b)) for all a > b. We characterize this class of functions via their representations as Newton series. This class, which obviously contains all polynomials with integral coefficients, also contains unexpected functions, for instance, all functions x ↦ ⌊e1/a ax x!⌋, with a ∈ ℤ\{0, 1}, and a function equal to ⌊e x!⌋ except on 0. Finally, to study the complement class, we look at functions ℕ → ℝ which are not uniformly close to any function having integral difference ratios.
References
- G. Boole, A Treatise on the Calculus of Finite Differences (Macmillan and Co., 1872); Reedition (Cosimo Classics, 2007) . Google Scholar
- Inform. Process. Lett. 114(4), 197 (2014). Crossref, Web of Science, Google Scholar
- J. Math. Pures. Appl. 17 , 366 ( 1852 ) . Google Scholar
- P. Dusart, Estimates of some functions over primes without Riemann hypothesis, preprint (2010) . Google Scholar
- J. Number Theory 125 , 393 ( 2007 ) . Crossref, Web of Science, Google Scholar
- Proc. Amer. Math. Soc. 137(6), 1933 (2009). Crossref, Web of Science, Google Scholar
-
R. Graham , D. Knuth and O. Patashnik , Concrete Mathematics: A Foundation for Computer Science ( Addison-Wesley , 1994 ) . Google Scholar - Canadian Math. Bull. 15(1), 33 (1972). Crossref, Web of Science, Google Scholar
- Acta Math. Hungarica 135(2), 160 (2011). Crossref, Web of Science, Google Scholar
-
A. Ya. Khinchin , Continued Fractions ( University of Chicago Press , 1964 ) . Google Scholar -
L. Kuipers and H. Niederreiter , Uniform Distribution of Sequences ( Dover , 1974 ) . Google Scholar - Math. Proc. Cambridge Philos. Soc. 145 , 739 ( 2008 ) . Crossref, Web of Science, Google Scholar
- Linear Algebra Appl. 406 , 272 ( 2005 ) . Crossref, Web of Science, Google Scholar
- Amer. Math. Monthly 89(2), 126 (1982). Crossref, Web of Science, Google Scholar
-
I. Newton , Philosophiæ Naturalis Principia Mathematica , 3rd edn. ( Harvard University Press , London , 1972 ) . Google Scholar -
I. Niven , Irrational Numbers ,Carus Mathematical Monograph ( Mathematical Association of America , 1956 ) . Crossref, Google Scholar - Internat. J. Algebra Comput. 21 , 295 ( 2011 ) . Link, Web of Science, Google Scholar
- J.-É. Pin and P. V. Silva, On uniformly continuous functions for some profinite topologies, in preparation . Google Scholar
- Arch. Math. 100(4), 337 (2013). Crossref, Web of Science, Google Scholar
- Math. Comput. 29(129), 243 (1975). Web of Science, Google Scholar
-
A. B. Shidlovskii , Transcendental Numbers ( de Gruyter , 1989 ) . Crossref, Google Scholar - Math. Ann. 57(2), 195 (1903). Crossref, Google Scholar
- Math. Comput. 30(134), 337 (1976). Web of Science, Google Scholar
- Am. Math. Monthly 89(9), 688 (1982). Crossref, Web of Science, Google Scholar
- M. Waldschmidt, An introduction to irrationality and transcendence methods, in Lecture Notes of Arizona Winter School "Special Functions and Transcendence", The University of Arizona (2008), 39 pp.; http://www.math.jussieu.fr/~miw/articles/pdf/AWSLecture1.pdf . Google Scholar
- Int. J. Math. Math. Sci. 2006 , 1 ( 2006 ) . Crossref, Google Scholar