World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE ITERATED INTEGRALS OF ln(1 + xn)

    https://doi.org/10.1142/S1793042112500042Cited by:1 (Source: Crossref)

    For a polynomial P, we consider the sequence of iterated integrals of ln P(x). This sequence is expressed in terms of the zeros of P(x). In the special case of ln(1 + x2), arithmetic properties of certain coefficients arising are described. Similar observations are made for ln(1 + x3).

    AMSC: 26A09, 11A25

    References

    • A.   Apelblat , Tables of Integrals and Series ( Verlag Harry Deutsch , Thun, Frankfurt am Main , 1996 ) . Google Scholar
    • G. Boros, O. Espinosa and V. Moll, Integrals Transforms Spec. Funct. 14, 187 (2003), DOI: 10.1080/1065246031000072265. ISIGoogle Scholar
    • M.   Bronstein , Symbolic Integration I. Transcendental Functions , Algorithms and Computation in Mathematics   1 ( Springer-Verlag , 1997 ) . Google Scholar
    • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edn., eds. A. Jeffrey and D. Zwillinger (Academic Press, New York, 2007). Google Scholar
    • R.   Graham , D.   Knuth and O.   Patashnik , Concrete Mathematics , 2nd edn. ( Addison-Wesley , Boston , 1994 ) . Google Scholar
    • C. Koutschan, Advanced applications of the holonomic systems approach, Ph.D. thesis, RISC, Johannes Kepler University, Linz, Austria (2009) . Google Scholar
    • C. Koutschan and V. Moll, Scientia 20, 93 (2011). Google Scholar
    • J. Liouville, J. Ec. Polyt. 14, 37 (1834). ISIGoogle Scholar
    • J.   Lützen , Joseph Liouville 1809–1882. Master of Pure and Applied Mathematics , Studies in the History of Mathematics and Physical Sciences   15 ( Springer-Verlag , New York , 1990 ) . Google Scholar
    • D. Manna and V. Moll, Math. Comp. 76, 2023 (2007), DOI: 10.1090/S0025-5718-07-01954-0. ISIGoogle Scholar
    • D. Manna and V. Moll, Amer. Math. Monthly 114, 232 (2007). ISIGoogle Scholar
    • D. Manna and V. Moll, Probab. Geom. Integrable Syst. 55, 201 (2008). Google Scholar
    • L. Medina, V. Moll and E. Rowland, Int. J. Number Theory 7(3), 623 (2011). Link, ISIGoogle Scholar
    • V. Moll, Notices Amer. Math. Soc. 49, 311 (2002). ISIGoogle Scholar
    • V. Moll, Notices Amer. Math. Soc. 57, 476 (2010). ISIGoogle Scholar
    • M. Petkovšek, J. Symbolic Comput. 14(3), 243 (1992), DOI: 10.1016/0747-7171(92)90038-6. ISIGoogle Scholar
    • M. Petkovšek, H. Wilf and D. Zeilberger, A=B (A. K. Peters, 1996) . Google Scholar
    • A. P.   Prudnikov , Yu. A.   Brychkov and O. I.   Marichev , Integrals and Series ( Gordon and Breach Science Publishers , 1992 ) . Google Scholar
    • R. H. Risch, Trans. Amer. Math. Soc. 139, 167 (1969), DOI: 10.1090/S0002-9947-1969-0237477-8. ISIGoogle Scholar
    • R. H. Risch, Bull. Amer. Math. Soc. 76, 605 (1970), DOI: 10.1090/S0002-9904-1970-12454-5. ISIGoogle Scholar
    • J. F.   Ritt , Integration in Finite Terms. Liouville's Theory of Elementary Functions ( Columbia University Press , New York , 1948 ) . Google Scholar
    • C. Schneider, Sém. Lothar. Combin. 56(B56b), 1 (2007). Google Scholar
    • X. Sun and V. Moll, Denominators of harmonic numbers, in preparation (2011) . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue