SYMMETRIC SQUARE L-FUNCTIONS AND SHAFAREVICH–TATE GROUPS, II
Abstract
We re-examine some critical values of symmetric square L-functions for cusp forms of level one. We construct some more of the elements of large prime order in Shafarevich–Tate groups, demanded by the Bloch–Kato conjecture. For this, we use the Galois interpretation of Kurokawa-style congruences between vector-valued Siegel modular forms of genus two (cusp forms and Klingen–Eisenstein series), making further use of a construction due to Urban. We must assume that certain 4-dimensional Galois representations are symplectic. Our calculations with Fourier expansions use the Eholzer–Ibukiyama generalization of the Rankin–Cohen brackets. We also construct some elements of global torsion which should, according to the Bloch–Kato conjecture, contribute a factor to the denominator of the rightmost critical value of the standard L-function of the Siegel cusp form. Then we prove, under certain conditions, that the factor does occur.
References
- Manuscripta Math. 44, 155 (1983), DOI: 10.1007/BF01166080. Crossref, Web of Science, Google Scholar
- Manuscripta Math. 104, 173 (2001), DOI: 10.1007/PL00005869. Crossref, Web of Science, Google Scholar
S. Bloch and K. Kato , The Grothendieck Festschrift, Volume I,Progress in Mathematics 86 (Birkhäuser, Boston, 1990) pp. 333–400. Crossref, Google Scholar- Math. Z. 189, 81 (1985). Crossref, Web of Science, Google Scholar
- Comment. Math. Univ. St. Pauli 42, 1 (1992). Google Scholar
- Compos. Math. 143, 290 (2007). Crossref, Web of Science, Google Scholar
-
C.-L. Chai and G. Faltings , Degeneration of Abelian Varieties ,Ergeb. Math. Grenzgeb. (3) 22 ( Springer , Berlin , 1990 ) . Google Scholar - Math. Ann. 217, 271 (1975), DOI: 10.1007/BF01436180. Crossref, Web of Science, Google Scholar
P. Deligne , Automorphic Forms, Representations and L-Functions, Part 2,Proc. Sympos. Pure Math. 33 (Amer. Math. Soc., Providence, RI, 1979) pp. 313–346. Crossref, Google Scholar- Ann. Sci. École Norm. Sup. (4) 7, 507 (1974). Crossref, Web of Science, Google Scholar
- Ann. Sci. École Norm. Sup. (4) 37, 663 (2004). Crossref, Web of Science, Google Scholar
- Math. Res. Lett. 8, 437 (2001). Crossref, Web of Science, Google Scholar
- Experiment. Math. 10, 383 (2001). Crossref, Web of Science, Google Scholar
- N. Dummigan and B. Heim, Symmetric square L-values and dihedral congruences for cusp forms, submitted. http://neil-dummigan.staff.shef.ac.uk/papers.html. . Google Scholar
- Internat. J. Math. 9, 443 (1998), DOI: 10.1142/S0129167X98000191. Link, Web of Science, Google Scholar
- C. R. Math. Acad. Sci. Paris 338, 381 (2004). Crossref, Google Scholar
- C. R. Math. Acad. Sci. Paris 338, 467 (2004). Crossref, Google Scholar
- Algebraic Analysis, Geometry and Number Theory, ed.
J. Igusa (Johns Hopkins University Press, Baltimore, 1989) pp. 25–80. Google Scholar , - J. Reine Angew. Math. 412, 113 (1990). Web of Science, Google Scholar
- Astérisque 223, 59 (1994). Google Scholar
- Ann. Sci. École Norm. Sup. (4) 15, 547 (1982). Crossref, Web of Science, Google Scholar
- The 1-2-3 of Modular Forms, eds.
J. H. Bruinier (Springer-Verlag, Berlin, Heidelberg, 2008) pp. 247–262. Crossref, Google Scholar , - Invent. Math. 63, 225 (1981), DOI: 10.1007/BF01393877. Crossref, Web of Science, Google Scholar
- J. Inst. Math. Jussieu 1, 1 (2002), DOI: 10.1017/S1474748002000014. Web of Science, Google Scholar
- Math. Z. 259, 97 (2008), DOI: 10.1007/s00209-007-0213-5. Crossref, Web of Science, Google Scholar
- Math. Z. 102, 30 (1967), DOI: 10.1007/BF01110283. Crossref, Web of Science, Google Scholar
- Kodai Math. J. 23, 255 (2000), DOI: 10.2996/kmj/1138044215. Crossref, Google Scholar
- Proc. Japan Acad. Ser. A Math. Sci. 55, 417 (1979), DOI: 10.3792/pjaa.55.417. Crossref, Google Scholar
- Astérisque 302, 1 (2005). Google Scholar
- Invent. Math. 84, 1 (1986), DOI: 10.1007/BF01388731. Crossref, Web of Science, Google Scholar
- Math. Ann. 275, 149 (1986), DOI: 10.1007/BF01458589. Crossref, Web of Science, Google Scholar
- A. Pitale and R. Schmidt, Ramanujan-type results for Siegel cusp forms of degree 2, preprint (2006); http://www.math.ou.edu/~rschmidt/papers/GSp4_satake.pdf. to appear in J. Ramanujan Math. Soc. . Google Scholar
- Invent. Math. 34, 151 (1976), DOI: 10.1007/BF01403065. Crossref, Web of Science, Google Scholar
- Math. Ann. 274, 335 (1986), DOI: 10.1007/BF01457078. Crossref, Web of Science, Google Scholar
- J. Inst. Math. Jussieu 5, 629 (2006), DOI: 10.1017/S147474800600003X. Crossref, Web of Science, Google Scholar
- Math. Comp. 58, 381 (1992), DOI: 10.2307/2153042. Crossref, Web of Science, Google Scholar
- W. Stein, The modular forms database: Tables; http://modular.ucsd.edu/Tables/tables.html. . Google Scholar
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, in Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Math., Vol. 350 (Springer, Berlin, 1973), pp. 1–55 . Google Scholar
- Invent. Math. 114, 289 (1993), DOI: 10.1007/BF01232672. Crossref, Web of Science, Google Scholar
- Proc. Japan Acad. Ser. A Math. Sci. 59, 139 (1983), DOI: 10.3792/pjaa.59.139. Crossref, Google Scholar
- Duke Math. J. 106, 485 (2001), DOI: 10.1215/S0012-7094-01-10633-9. Crossref, Web of Science, Google Scholar
- The 1-2-3 of Modular Forms, eds.
J. H. Bruinier (Springer-Verlag, Berlin, Heidelberg, 2008) pp. 181–245. Crossref, Google Scholar , - Astérisque 302, 67 (2005). Google Scholar
D. Zagier , Modular Functions of One Variable, VI,Lect. Notes Math. 627 (Springer, 1977) pp. 105–169. Crossref, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out new Number Theory books in our Mathematics 2021 catalogue |