World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.


    The prices of the option and futures of a stock both reflect the market's expectation of futures changes of the stock's price. Their prices normally align with each other within a limited window. When they do not, arbitrage opportunities arise: an investor who spots the misalignment will be able to buy (sell) options on the one hand, and sell (buy) futures on the other and make risk-free profits. Historical data suggest that option and futures prices on the LIFFE Market do not align occasionally. Arbitrage chances are rare. Besides, they last for seconds only before the market adjusts itself. The challenge is not only to discover such chances, but to discover them ahead of other arbitragers. In the past, we have introduced EDDIE as a genetic programming tool for forecasting. This paper describes EDDIE-ARB, a specialization of EDDIE, for forecasting arbitrage opportunities. As a tool, EDDIE-ARB was designed to enable economists and computer scientists to work together to identify relevant independent variables. Trained on historical data, EDDIE-ARB was capable of discovering rules with high precision. Tested on out-of-sample data, EDDIE-ARB out-performed a naive ex ante rule, which reacted only when misalignments were detected. This establishes EDDIE-ARB as a promising tool for arbitrage chances discovery. It also demonstrates how EDDIE brings domain experts and computer scientists together.


    • A. Abe and Y. Ohsawa, New Generation Computing 21(1), 1 (2003). ISIGoogle Scholar
    • A. Abe and Y. Ohsawa, New Generation Computing 21(2), 107 (2003). Crossref, ISIGoogle Scholar
    • F. Allen and R. Karjalainen, Using genetic algorithms to find technical trading rules, Working Paper, Rodney L. White Center for Financial Research (1995) . Google Scholar
    • S. S. Alexander, The Random Character of Stock Market Prices, No. 2, ed. P. Cootner (MIT Press, Cambridge, MA, 1964) pp. 338–372. Google Scholar
    • J. W.   Backus , The syntax and semantics of the proposed international algebraic language of Zurich ACM-GAMM conference , Proc. Int. Conf. Information Processing, ICIP ( 1959 ) . Google Scholar
    • K. H. Bae, K. Chan and Y. L. Cheung, J. Futures Markets 18, 743 (1998). Crossref, ISIGoogle Scholar
    • R. J. Bauer Jr. , Genetic Algorithms and Investment Strategies ( John Wiley & Sons, Inc. , New York , 1994 ) . Google Scholar
    • W. Brock, J. Lakonishok and B. LeBaron, J. Finance 47, 1731 (1992). Crossref, ISIGoogle Scholar
    • S.-H. Chen and C.-H. Yeh, J. Economic Dynamics and Control 21, 1043 (1997). Crossref, ISIGoogle Scholar
    • B. Cornell and K. French, J. Finance 38, 675 (1988). Crossref, ISIGoogle Scholar
    • J. Evnine and A. Rudd, J. Finance 40(3), 743 (1985). Crossref, ISIGoogle Scholar
    • E. F. Fama and M. E. Blume, J. Business 39(1), 226 (1966). CrossrefGoogle Scholar
    • J. K. W. Fung, K. C. Chan and C. Kam, J. Futures Markets 14, 957 (1994). Crossref, ISIGoogle Scholar
    • J. K. W. Funget al., J. Futures Markets 17, 797 (1997). Crossref, ISIGoogle Scholar
    • G.   Gemmill , Options Pricing ( McGraw-Hill , Maidenhead, UK , 1993 ) . Google Scholar
    • S.   Goonatilake and P.   Treleaven , Intelligent Systems for Finance and Business ( Wiley , New York , 1995 ) . Google Scholar
    • O. P. Gwilm and M. Buckle, The European J. Finance 5, 73 (1999). Crossref, ISIGoogle Scholar
    • D. E.   Goldberg , Genetic Algorithms in Search, Optimization and Machine Learning ( Addison-Wesley , 1989 ) . Google Scholar
    • J. H.   Holland , Adaptation in Natural and Artificial System ( University of Michigan Press , 1975 ) . Google Scholar
    • N. K.   Kasabov , Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering ( MIT Press , 1996 ) . CrossrefGoogle Scholar
    • J. R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , 1992 ) . Google Scholar
    • J. R.   Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , 1994 ) . Google Scholar
    • J.   Koza et al. (eds.) , Proceeding of the First Annual Conference Genetic Programming ( MIT Press , 1996 ) . Google Scholar
    • J. H. Lee and N. Nayar, J. Futures Markets 13, 889 (1993). Crossref, ISIGoogle Scholar
    • J. Li and E. P. K. Tsang, Improving technical analysis predictions: An application of genetic programming, Proc. 12th Int. Florida AI Research Society Conf. (1999) pp. 108–112. Google Scholar
    • J.   Li and E. P. K.   Tsang , Investment decision making using FGP: A case study , Proc. Congress on Evolutionary Computation (CEC'99) . Google Scholar
    • S. Mahfoud and G. Mani, Applied Artificial Intelligence 10, 543 (1996). Crossref, ISIGoogle Scholar
    • S. Mahfoud and G. Mani, J. Applied Artificial Intelligence 10(6), 543 (1997). Crossref, ISIGoogle Scholar
    • S. Markoseet al., Evolutionary arbitrage for FTSE index options and futures, Proc. Congress on Evolutionary Computation, CEC2001 (2001) pp. 275–282. Google Scholar
    • S. Markose, E. Tsang and H. Er, Genetic Algorithms and Genetic Programming in Computational Finance, ed. S.-H. Chen (Kluwer Academic Press, 2002) pp. 281–308. CrossrefGoogle Scholar
    • M.   Mitchell , An Introduction to Genetic Algorithms ( MIT Press , 1996 ) . Google Scholar
    • D. Modest and M. Sunderesan, J. Futures Markets 3, 15 (1983). Crossref, ISIGoogle Scholar
    • C. Neely, P. Weller and R. Ditmar, J. Financial and Quantitative Analysis 32, 405 (1997). Crossref, ISIGoogle Scholar
    • Y.   Ohsawa and P.   McBurney , Chance Discovery ( Springer Publishers , Berlin , 2003 ) . CrossrefGoogle Scholar
    • Y.   Ohsawa , P.   McBurney and S.   Parson , Chance discovery: The discovery and management of chance events , Papers from the AAAI Fall Symposium, Technical Report FS-02-01 ( The AAAI Press , Cambridge, MA , 2002 ) . Google Scholar
    • M. Oussaideneet al., J. Parallel Computing 23(8), 1183 (1997). Crossref, ISIGoogle Scholar
    • E. Saad, D. Prokhorov and D. Wunsch, IEEE Trans. Neural Networks 9, 1456 (1998). Crossref, ISIGoogle Scholar
    • D. Sornette and W. X. Zhou, Quantitative Finance 2(6), 468 (2002). ISIGoogle Scholar
    • H. R. Stoll, J. Finance 25, 801 (1969). Google Scholar
    • R. J. Sweeney, J. Financial and Quantitative Analysis 23, 285 (1988). Crossref, ISIGoogle Scholar
    • E. P. K. Tsanget al., J. Management Economics  (2000), Google Scholar
    • E. P. K. Tsang, J. Li and J. M. Butler, Int. J. Software, Practice and Experience 28(10), 1033 (1998). Crossref, ISIGoogle Scholar
    • E. P. K. Tsang and J. Li, Genetic Algorithms and Programming in Computational Finance, ed. S.-H. Chen (Kluwer Academic Publishers, 2002) pp. 161–174. CrossrefGoogle Scholar
    • E. P. K. Tsang, P. Yung and J. Li, J. Decision Support Systems 37(4), 559 (2004). Crossref, ISIGoogle Scholar
    • A. L.   Tucker , Financial Futures, Options and Swaps ( West Publishing Company , St. Paul, MN. , 1991 ) . Google Scholar
    • P. K. Yadav and P. Pope, J. Futures Markets 10, 573 (1990). Crossref, ISIGoogle Scholar
    • A.   Zellner , Statistics, Econometrics and Forecasting ( Cambridge University Press , 2004 ) . CrossrefGoogle Scholar