World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A THREE-STEP COMBINED GENETIC PROGRAMMING AND NEURAL NETWORKS METHOD OF FORECASTING THE S&P/CASE-SHILLER HOME PRICE INDEX

    https://doi.org/10.1142/S1469026813500016Cited by:1 (Source: Crossref)

    Forecasts of the San Diego and San Francisco S&P/Case-Shiller Home Price Indices through December 2012 are obtained using a multi-agent system that utilizes January, 2002–June, 2011 data. Agents employ genetic programming (GP) and neural networks (NN) in a three-stage process to produce fits and forecasts. First, GP and NN compete to provide independent predictions. In the second stage, they cooperate by fitting the first-stage competitor's residuals. Outputs from the first two stages then become inputs to produce two final GP and NN outputs. The NN output from the third stage using the combined method produces improved forecasts over the 3-stage GP method as well as those produced by either method alone. The proposed methodology serves as an example of how combining more than one estimation/forecasting technique may lead to more accurate forecasts.

    References

    • E. C. Jara, Genetic Programm. Evolvable Mach. 12(4), 429 (2011). CrossrefGoogle Scholar
    • J.   Koza , Genetic Programming ( The MIT Press , Cambridge, MA , 1992 ) . Google Scholar
    • M.   Kaboudan , J. Econ. Dyn. Cont.   25 , 1719 ( 2001 ) . CrossrefGoogle Scholar
    • S.   Haykin , Neural Networks: A Comprehensive Foundation ( Prentice Hall PTR , Upper Saddle River, NJ , 1994 ) . Google Scholar
    • J.   Principe , N.   Euliano and C.   Lefebvre , Neural and Adaptive Systems: Fundamentals through Simulations ( John Wiley & Sons , New York , 2003 ) . Google Scholar
    • M. Kaboudan, TSGP: A time series genetic programming software (2006), http://Bulldog2. Redlands.edu/fac/mak_kaboudan . Google Scholar
    • NeuroSolutionsTM. The neural network simulation environment, Version 3 (NeuroDimensions, Inc., Gainesville, FL, 2002) . Google Scholar
    • G. S. Sirmans, D. A. Macpherson and E. N. Zietz, J. Real Est. Lit. 13(1), 3 (2005). Google Scholar
    • A.   Brint , J. Oper. Res. Soc.   60 , 339 ( 2009 ) . CrossrefGoogle Scholar
    • W. C.   Wheaton and G.   Nechayev , J. Real Est. Res.   1 ( 2008 ) . Google Scholar
    • J. Clapp and C. Giaccotto, J. Amer. Stat. Assoc. 87(418), 300 (1992). CrossrefGoogle Scholar
    • J. M.   Clapp and C.   Giacotto , J. Real Est. Res.   1 ( 2002 ) . Google Scholar
    • C.   Serrano and M.   Hoesli , J. Real Est. Fin. Econ.   41 , 170 ( 2010 ) . CrossrefGoogle Scholar
    • W.   Miles , J. Real Est. Fin. Econ.   36 , 249 ( 2008 ) . CrossrefGoogle Scholar
    • D. Fischer, J. Real Est. Lit. 16(3), 347 (2008). Google Scholar
    • M. Kaboudan, J. Real Est. Lit. 16(2), 219 (2008). Google Scholar
    • M.   Aiken and M.   Bsat , Inf. Sys. Mgmt. Fall   42 ( 1999 ) . CrossrefGoogle Scholar
    • S.   Peterson and A. B.   Flanagan , J. Real Est. Res.   147 ( 2009 ) . CrossrefGoogle Scholar
    • J.   Guan , J.   Zurada and A. S.   Levitan , J. Real Est. Res.   395 ( 2008 ) . CrossrefGoogle Scholar
    • M.   Kaboudan , Multi-Agent Applications with Evolutionary Computation and Biologically Inspired Technologies: Intelligent Techniques for Ubiquity and Optimization , eds. S.-H.   Chen , Y.   Kambayashi and H.   Sato ( Idea Group Inc. , Hershey, PA , 2011 ) . Google Scholar
    • M. Kaboudan, Forecasting the S&P/Case-Shiller home price index for Los Angeles and San Diego by use of agent-based modeling, A paper presented on April 14, 2011 during the ARES' 2011 Meetings in Seattle (2011) . Google Scholar
    • Y. Liang, Int. J. Quality Reliability Mgmt. 25(2), 201 (2008). CrossrefGoogle Scholar
    • C. Slim, J. Amer. Acad. Buis., Cambridge 15(1), 294 (2009). Google Scholar
    • M.   Alvarez-Diaz and A.   Alvarez , Empir. Econ.   30 , 643 ( 2005 ) . CrossrefGoogle Scholar
    • R. Kuo, Eur. J. Oper. Res. 129(3), 496 (2001). CrossrefGoogle Scholar
    • NOAA, Ensemble prediction systems: A basic training manual targeted for operational meteorologists (2006), http://www.hpc.ncep.noaa.gov/ensembletraining . Google Scholar
    • E. Hadavandi, H. Shavandi and A. Ghanbari, Expert Sys. Appl.: An Int. J. 38(8), 9392 (2011). CrossrefGoogle Scholar
    • M. Sarchami and M. Eftekhari, Afr. J. Bus. Mgmt. 6(11), 4288 (2012). Google Scholar
    • H. Pedro and C. Coimbra, Solar Energy 86(7), 2017 (2012). CrossrefGoogle Scholar
    • M. Bashiri and A. Geranmayeh, Scientia Iranica, E, Ind. Eng. 18(6), 1600 (2011). CrossrefGoogle Scholar
    • M. Divsalaret al., J. Forecasting 31(6), 504 (2012). CrossrefGoogle Scholar
    • G. Sermpiniset al., Eur. J. Oper. Res. 225(3), 528 (2013). CrossrefGoogle Scholar
    • A. Gandomi and A. Alavi, Inform. Sci. 181(23), 5227 (2011). CrossrefGoogle Scholar
    • R.   Fair and D.   Jaffee , Econometrica   40 , 497 ( 1972 ) . CrossrefGoogle Scholar
    • Labor market info: Unemployment rate and labor force, Employment Development Department, the State of California (2011), http://www.labormarketinfo.edd. ca.gov/cgi/dataanalysis/labForceReport.asp? menuchoice=LABFORCE . Google Scholar
    • Consumer price index (CPI) — California, Los Angeles CMSA, San Francisco CMSA, San Diego and United States city average, California department of finance: Financial and economic data (2011), http://www.dof.ca.gov/html/fs_data/latestEconData/fs_price.htm . Google Scholar
    • The federal cost of funds index (2011), http://www.freddiemac.com/news/finance/cof_index.htm . Google Scholar
    • Terms on conventional single-family mortgages, monthly national averages, all homes, fixed-rate mortgages, the federal housing finance agency: Research & analysis — market data — monthly interest rate survey data — historical summary tables, Table 20 (2011), http://www.fhfa.gov . Google Scholar
    • New residential sales history tables, U.S. census bureau, manufacturing, mining, and construction statistics (2011), http://www.census.gov/const/www/newressales index_excel. html . Google Scholar
    • Monthly composite prices (2011), http://www.randomlengths.com/base.asp?s1=In_Depth&s2=Useful_Data&s3=Monthly_Composite_Prices . Google Scholar
    • Employment in real estate (2011), http://www.labormarketinfo.edd.ca.gov/cgi/dataanalysis/cesReport.asp?menuchoice=ces . Google Scholar
    • Residential building construction. (2011), http://www.labormarketinfo.edd.ca.gov/cgi/dataanalysis/areaselection.asp?tablename=ces . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!