A Decoupling Approach to the Quantum Capacity
Abstract
We give a short proof that the coherent information is an achievable rate for the transmission of quantum information through a noisy quantum channel. Our method is to produce random codes by performing a unitarily covariant projective measurement on a typical subspace of a tensor power state. We show that, provided the rank of each measurement operator is sufficiently small, the transmitted data will, with high probability, be decoupled from the channel environment. We also show that our construction leads to random codes whose average input is close to a product state and outline a modification yielding unitarily invariant ensembles of maximally entangled codes.
References
- Phys. Rev. A 54, 2614 (1996), DOI: 10.1103/PhysRevA.54.2614. Web of Science, Google Scholar
- IEEE Transactions on Information Theory 46, 1317 (2000), DOI: 10.1109/18.850671. Web of Science, Google Scholar
- I. Devetak, A. W. Harrow, and A. Winter, A resource framework for quantum Shannon theory, (2005) , arXiv:quant-ph/0512015 . Google Scholar
- IEEE Trans. Inform. Theory 51, 44 (2005), arXiv:quant-ph/0304127 DOI: 10.1109/TIT.2004.839515. Web of Science, Google Scholar
- Phys. Rev. A 55, 1613 (1996), DOI: 10.1103/PhysRevA.55.1613. Web of Science, Google Scholar
- P. W. Shor, The quantum channel capacity and coherent information, MSRI seminar, November 2002 . Google Scholar
- M. Horodecki, J. Oppenheim, and A. Winter, Quantum state merging and negative information, (2005) , arXiv:quant-ph/0512247 . Google Scholar
- R. Klesse, Approximate quantum error correction, random codes, and quantum channel capacity, (2007) , arXiv:quant-ph/0701102 . Google Scholar
-
M. Nielsen and I. Chuang , Quantum information and computation ( Cambridge University Press , 1998 ) . Google Scholar - Rep. Math. Phys. 9, 273 (1976), DOI: 10.1016/0034-4877(76)90060-4. Google Scholar
- Quantum Information Processing 1, 5 (2002), DOI: 10.1023/A:1019653202562. Web of Science, Google Scholar
- Phys. Rev. A 54, 2629 (1996), DOI: 10.1103/PhysRevA.54.2629. Web of Science, Google Scholar
- P. Hayden A. Abeyesinghe, I. Devetak, and A. Winter, The mother of all protocols: Restructuring quantum information's family tree, 2006 , arXiv:quant-ph/0606225 . Google Scholar
- Comm. Math. Phys. 256, 287 (2005), arXiv:quant-ph/0311131 DOI: 10.1007/s00220-005-1317-6. Web of Science, Google Scholar
- J. Yard, I. Devetak and P. Hayden, Capacity theorems for quantum multiple access channels: classical-quantum and quantum-quantum capacity regions, to appear in: IEEE Trans. Inform. Theory, 2005 , arXiv:quant-ph/0501045 . Google Scholar
- J. Yard, I. Devetak and P. Hayden, Quantum multiple access channels, to appear in: IEEE Trans. Inform. Theory, 2006 , arXiv:quant-ph/0603098 . Google Scholar
- IEEE Trans. Inf. Theory 48, 580 (2002), arXiv:quant-ph/0103098 DOI: 10.1109/18.985948. Web of Science, Google Scholar
- C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and approximate unitary 2-designs: Constructions and applications, (2006) , arXiv:quant-ph/0606161 . Google Scholar
- D. Gottesman, Stabilizer codes and quantum error correction, Caltech Ph.D. Thesis, 1997 . Google Scholar
- IEEE Trans. Info. Th. 51, 4263 (2005), arXiv:quant-ph/0207113 DOI: 10.1109/TIT.2005.860824. Web of Science, Google Scholar
- D. Gottesman, P. Hayden, and A. Smith, Efficient algorithms for quantum Shannon theory, in preparation, 2006 . Google Scholar
- Phys. Rev. A 57, 830 (1998), arXiv:quant-ph/9706061 DOI: 10.1103/PhysRevA.57.830. Web of Science, Google Scholar
- Phys. Rev. Lett. 98, 030501 (2007), arXiv:quant-ph/0604107 DOI: 10.1103/PhysRevLett.98.030501. Web of Science, Google Scholar
- G. Smith, J. A. Smolin, and A. Winter, The quantum capacity with symmetric side channels, (2006) , arXiv:quant-ph/0607039 . Google Scholar
- Bell System Technical Journal 27, 379 (1948). Web of Science, Google Scholar