Monoterpene-based metallophthalocyanines: Sustainable synthetic approaches and photophysical studies
Abstract
Tetra-substituted zinc(II) and copper(II) phthalocyanines bearing peripheral alkoxy-monoterpene groups were prepared by conventional vs. non-conventional synthetic approaches (ultrasound and microwave irradiation). The synthesis of (1-(–)-myrtenol (a) and (1,2,5-(-menthol (b) derived phthalonitrile precursors was performed through ipso-nitro aromatic substitution reactions, with optimal conditions being obtained using ultrasound irradiation, which allowed us to achieve full conversions in 4.5 h, with isolated yields up to 74%. The subsequent cyclotetramerization of monoterpene-based phthalonitriles was carried out using Zn(II) or Cu(II) salts as metal templates, and also using conventional and non-conventional heating methods. Microwave-assisted synthesis was shown to be the most efficient approach, providing complete conversions in 1 h, yielding the target monoterpene-based metallophthalocyanines in up to 70% isolated yields. Furthermore, photophysical and photochemical studies revealed that Zn(II) phthalocyanines possess fluorescence quantum yields in the range of 0.27–0.29, while Cu(II) phthalocyanines exhibited room temperature phosphorescence. In addition, the monoterpene-based Zn(II) phthalocyanines led to high singlet oxygen quantum yields ( 0.55–0.69).

Dedicated to Professor Roberto Paolesse on the occasion of his 60th birthday.
References
- 1. . New J. Chem. 2019; 43: 9314–9327. Crossref, Web of Science, Google Scholar
- 2. . J. Porphyrins Phthalocyanines 2000; 4: 325–330. Link, Web of Science, Google Scholar
- 3. . Phthalocyanines: Properties and Applications, Vol. 1. Wiley — VCH: Weinheim, 1989; 1–448. Google Scholar
- 4. . Coord. Chem. Rev. 2019; 381: 1–64. Crossref, Web of Science, Google Scholar
- 5. . Chem. Rev. 2017; 117: 11753–11795. Crossref, Web of Science, Google Scholar
- 6. . Planta 2019; 249: 1–8. Crossref, Web of Science, Google Scholar
- 7. . Dyes Pigm. 2016; 133: 311–323. Crossref, Web of Science, Google Scholar
- 8. . Chin. Chem. Lett. 2019; 30: 389–391. Crossref, Web of Science, Google Scholar
- 9. . J. Phys. Chem. C 2019; 123: 11118–11133. Crossref, Web of Science, Google Scholar
- 10. . Chem. Commun. 2006; 2394–2396. Crossref, Web of Science, Google Scholar
- 11. . J. Porphyrins Phthalocyanines 2001; 5: 161–169. Link, Web of Science, Google Scholar
- 12. . Dyes Pigm. 2019; 163: 197–203. Crossref, Web of Science, Google Scholar
- 13. . Chem. Rev. 2013; 113: 8152–8191. Crossref, Web of Science, Google Scholar
- 14. . J. Porphyrins Phthalocyanines 2018; 22: 371–397. Link, Web of Science, Google Scholar
- 15. . J. Porphyrins Phthalocyanines 2006; 10: 1165–1171. Link, Web of Science, Google Scholar
- 16. . J. Porphyrins Phthalocyanines 2000; 4: 393–397. Link, Web of Science, Google Scholar
- 17. . Talanta 2009; 78: 723–729. Crossref, Web of Science, Google Scholar
- 18. . Chem. Rev. 2016; 116: 6184–6261. Crossref, Web of Science, Google Scholar
- 19. . Coord. Chem. Rev. 2001, 219: 99–123. Crossref, Web of Science, Google Scholar
- 20. . Polyhedron 2018; 153: 128–138. Crossref, Web of Science, Google Scholar
- 21. . J. Lumin. 2018; 204: 464–471. Crossref, Web of Science, Google Scholar
- 22. . Inorg. Chim. Acta 2019; 489: 180–190. Crossref, Web of Science, Google Scholar
- 23. . ChemPhysChem 2009; 10: 2725–2732. Crossref, Web of Science, Google Scholar
- 24. . J. Photochem. Photobiol. A 2013; 253: 22–29. Crossref, Web of Science, Google Scholar
- 25. . ARKIVOC 2010: 136–208. Crossref, Web of Science, Google Scholar
- 26. . Materials 2019; 12: 1177. Crossref, Web of Science, Google Scholar
- 27. . J. Porphyrins Phthalocyanines 2019; 23: 476–492. Link, Web of Science, Google Scholar
- 28. . J. Porphyrins Phthalocyanines 2017; 21: 1–17. Link, Web of Science, Google Scholar
- 29. . J. Coord. Chem. 2018; 71: 2340–2357. Crossref, Web of Science, Google Scholar
- 30. . Houben-Weyl Methods in Organic Chemistry, Vol. E9 b1, George Thieme Verlag Stuttgart: New York, 1998, pp. 137–561. Google Scholar
- 31. . J. Polym. Eng. 2011; 31: 105–113. Crossref, Web of Science, Google Scholar
- 32. . J. Organomet. Chem. 2015; 787: 8–13. Crossref, Web of Science, Google Scholar
- 33. . Ultrason. Sonochem. 2003; 10: 265–270. Crossref, Web of Science, Google Scholar
- 34. . J. Porphyrins Phthalocyanines 2019; 23: 329–346. Link, Web of Science, Google Scholar
- 35. . Green Chem. 2012; 14: 1666–1672. Crossref, Web of Science, Google Scholar
- 36. . Catalysts 2018; 8: 480. Crossref, Web of Science, Google Scholar
- 37. . Eur. J. Med. Chem. 2019; 184: 111740. Crossref, Web of Science, Google Scholar
- 38. . J. Porphyrins Phthalocyanines 2015; 19: 946–955. Link, Web of Science, Google Scholar
- 39. . J. Hazard. Mater. 2012; 233: 79–88. Crossref, Web of Science, Google Scholar
- 40. . ChemCatChem 2018; 10: 2792–2803. Crossref, Web of Science, Google Scholar
- 41. . J. Porphyrins Phthalocyanines 2018; 22: 331–341. Link, Web of Science, Google Scholar
- 42. . Catalysts 2017; 7: 210. Crossref, Web of Science, Google Scholar
- 43. . In Applied Photochemistry, Evans RC, Douglas P and Burrows HD . (Eds.), Springer: Dordrecht, 2013, pp. 533–585. Crossref, Google Scholar
- 44. . J. Phys. Chem. B 1999; 103: 8612–8617. Crossref, Web of Science, Google Scholar
- 45. . J. Phys. Chem. B 2006; 110: 15100–15106. Crossref, Web of Science, Google Scholar
- 46. . J. Am. Chem. Soc. 1998; 120: 4960–4976. Crossref, Web of Science, Google Scholar
- 47. . J. Stat. Softw. 2012; 49: 1–22. Crossref, Web of Science, Google Scholar
- 48. . Helv. Chim. Acta 2001; 84: 2533–2539. Crossref, Web of Science, Google Scholar
- 49. . Asian J. Chem. 2013; 25: 2067–2069. Crossref, Google Scholar
- 50. . In The Porphyrin Handbook, Kadish KM, Smith KM and Guilard R . (Eds.), Academic Press: Amsterdam, 2003; Vol. 16, pp. 43–116. Crossref, Google Scholar
- 51. . Dyes Pigm. 2019; 164: 296–304. Crossref, Web of Science, Google Scholar
- 52. . J. Phys. Chem. A 2006; 110: 8627–8636. Crossref, Web of Science, Google Scholar
- 53. . Inorg. Chem. 1994; 33: 584–595. Crossref, Web of Science, Google Scholar
- 54. . New J. Chem. 2007; 31: 377–384. Crossref, Web of Science, Google Scholar
- 55. . J. Phys. Chem. A 2006; 110: 9607–9616. Crossref, Web of Science, Google Scholar
- 56. . J. Phys. Chem. B 2010; 114: 14205–14213. Crossref, Web of Science, Google Scholar
- 57. . Optical Spectra of Phthalocyanines and Related Compounds. Springer: Japan, 2015, pp. 107–131. Crossref, Google Scholar
- 58. . Universal Journal of Physics and Application 2017; 11: 109–114. Crossref, Web of Science, Google Scholar
- 59. . J. Chem. Phys. 1971; 55: 4131–4140. Crossref, Web of Science, Google Scholar
- 60. . Dyes Pigm. 2019; 164: 296–304. Crossref, Web of Science, Google Scholar
- 61. . Tetrahedron 2010; 66: 3248–3258. Crossref, Web of Science, Google Scholar
- 62. . Photochem. Photobiol. Sci. 2004; 3: 120–126. Crossref, Web of Science, Google Scholar
- 63. . Tetrahedron 2010; 66: 3248–3258. Crossref, Web of Science, Google Scholar
- 64. . J. Porphyrins Phthalocyanines 1998; 2: 145–158. Link, Web of Science, Google Scholar
Handbook of Porphyrin Science now available in 46 volumes