World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Synthesis, structures and reduction chemistry of monophthalocyanine scandium hydroxides

    The preparation and structural characterization of a pair of scandium(III) phthalocyanine hydroxide complexes were achieved by reaction of PcScCl with alkali metal alkoxides, likely via hydrolysis of soluble PcSc-alkoxide intermediates. A Sc2Li2(μ3-OH)4 cubane supported by two distorted Pc rings of the form (PcSc)2(μ3-OH)4Li2(THF)(DME) was isolated from the reaction of PcScCl with LiOiPr, while a simpler alkali-metal-free [Pc2Sc2(μ2-OH)2(THF)] was obtained from addition of NaOtBu; both structures are reminiscent of bent metallocenes, with dihedral angles between the two Pc rings of 50.8 and 37.7respectively. A soluble PcScOH material can also be obtained directly via hydrolysis of insoluble PcScCl in approximately 95:5 THF:water. Reduction of the Pc ring of PcScCl using KC8 is reversible and generates Pc3- and Pc4--containing materials that were characterized via UV-vis spectroscopy and, where appropriate EPR and 1H NMR spectroscopy; analogous reductions of the PcScOH-based species were irreversible. Exposure of the air-sensitive, reduced PcScCl-based species to ambient atmosphere generated PcScOH materials analogous to the direct hydrolysis route.

    This paper is part of the 2019 Women in Porphyrin Science special issue.


    • 1. Lever ABP, Milaeva ER and Speier G, In Phthalocyanines: Properties and Applications, Vol. 3. Leznoff CCLever ABP. (Eds.) VCH: New York, 1993, pp. 1–69. Google Scholar
    • 2. Fukuda T and Kobayashi N, In Handbook of Porphyrin Science, Vol. 9. Kadish KMSmith KMGuilard R. (Eds.) World Scientific Press: Singapore, 2010, pp. 1–644. LinkGoogle Scholar
    • 3. Kimura M and Shirai H. In The Porphyrin Handbook: Applications of Phthalocyanines, Vol. 19. Kadish KMSmith KMGuilard R. (Eds.) Academic Press: San Diego, 2003, pp. 151–177. Google Scholar
    • 4. Lever ABP. J. Porphyrins Phthalocyanines 1999; 3: 488–499. Link, ISIGoogle Scholar
    • 5. Mack J and Stillman MJ. Coord. Chem. Rev. 2001; 219–221: 993–1032. Crossref, ISIGoogle Scholar
    • 6. Stillman MJ and Nyokong T. In Phthalocyanines: Properties and Applications, Vol. 1. Leznoff CCLever ABP. (Eds.) VCH: New York, 1989, pp. 133–289. Google Scholar
    • 7. Zhou W and Leznoff DB. Chem. Commun. 2018; 54: 1829–1832. Crossref, ISIGoogle Scholar
    • 8. Zhou W, Thompson JR, Leznoff CC and Leznoff DB. Chem. — Eur. J. 2017; 23: 2323–2331. Crossref, ISIGoogle Scholar
    • 9. Zhou W, Platel R, Tasso TT, Furuyama T, Kobayashi N and Leznoff DB. Dalton Trans. 2015; 44: 13955–13961. Crossref, ISIGoogle Scholar
    • 10. Platel RH, Tasso TT, Zhou W, Furuyama T, Kobayashi N and Leznoff DB. Chem. Commun. 2015; 15: 5986–5989. Crossref, ISIGoogle Scholar
    • 11. Wong EWY, Walsby CJ, Storr T and Leznoff DB. Inorg. Chem. 2010; 49: 3343–3350. Crossref, ISIGoogle Scholar
    • 12. Huckstadt H, Tutass A, Goldner M, Cornelissen U and Homborg H. Z. Anorg. Allg. Chem. 2001; 627: 485–497. Crossref, ISIGoogle Scholar
    • 13. Lapkina LA, Sakharov SG, Konstantinov NY, Larchenko VE, Gorbunova YG and Tsivadze AY. Russ. J. Inorg. Chem. 2007; 52: 1758–1768. Crossref, ISIGoogle Scholar
    • 14. Kirin S and Moskalev PN. Zh. Neorg. Khim. 1971; 16: 3179–3181. Google Scholar
    • 15. Varmuza K, Moresch G and Meller A. Monatsh. Chem. 1974; 105: 327–333. Crossref, ISIGoogle Scholar
    • 16. Arokiyanathan AL and Lakshmipathi S. Inorg. Chim. Acta 2018; 483: 203–210. Crossref, ISIGoogle Scholar
    • 17. Suzuki A and Oku T. Magnetochemistry 2017; 3: 21. Crossref, ISIGoogle Scholar
    • 18. Lu K, Zhou J, Zhou L, Wang Q, Sun Q and Jena P. App. Phys. Lett. 2011; 99: 163104. Crossref, ISIGoogle Scholar
    • 19. Pushkarev VE, Tomilova LG and Nemykin VN. Coord. Chem. Rev. 2016; 319: 110–179. Crossref, ISIGoogle Scholar
    • 20. Hoffmann R, Beier BF, Muetterties EL and Rossi AR. Inorg. Chem. 1977; 16: 511–522. Crossref, ISIGoogle Scholar
    • 21. Kaupp M. Angew. Chem., Int. Ed. 2001; 40: 3534–3565. Crossref, ISIGoogle Scholar
    • 22. Sears J, Cramer R and Boyle T. Acta Cryst. E. 2019; 75: 540–542. Crossref, ISIGoogle Scholar
    • 23. Arnold J, Hoffman CG, Dawson DY and Hollander FJ. Organometallics 1993; 12: 3645–3654. Crossref, ISIGoogle Scholar
    • 24. Brand H and Arnold J. Coord. Chem. Rev. 1995; 140: 137–168. Crossref, ISIGoogle Scholar
    • 25. Smallcombe SH, Patt SL and Keifer PA. J. Magn. Reson. A 1995; 117: 295–303. CrossrefGoogle Scholar
    • 26. Simpson AJ and Brown SA. J. Magn. Reson. 2005; 175: 340–346. Crossref, ISIGoogle Scholar
    • 27. Stillman MJ. In Phthalocyanines: Properties and Applications, Vol. 3. Leznoff CCLever ABP. (Eds.) VCH: New York, 1993, pp. 227–296. Google Scholar
    • 28. Wong EW and Leznoff DB, J. Porphyrins Phthalocyanines 2012; 16: 154–162. Link, ISIGoogle Scholar
    • 29. Sewchok MG, Haushalter RC and Merloa JS. Inorg. Chim. Acta 1988; 144: 47–51. Crossref, ISIGoogle Scholar
    • 30. Konarev DV, Kuzmin AV, Faranov MA, Ishikawa M, Khasanov SS, Nakano Y, Otsuka A, Yamochi H, Saito G and Lyubovskaya RM. Chem. —Eur. J. 2015; 21: 1014–1028. Crossref, ISIGoogle Scholar
    • 31. Tahiri M, Doppelt P, Fischer J and Weiss R. Inorg. Chim. Acta 1987; 127: L1–L3. Crossref, ISIGoogle Scholar
    • 32. Konarev DV, Zorina LV, Khasanov SS, Litvinov AL, Otsuka A, Yamochi H, Saito G and Lyubovskaya RN. Dalton Trans. 2013; 42: 6810–6816. Crossref, ISIGoogle Scholar
    • 33. Cissell JA, Vaid TP, DiPasquale AG and Rheingold AL. Inorg. Chem. 2007; 46: 7713–7715. Crossref, ISIGoogle Scholar
    • 34. Cissell JA, Vaid TP and Rheingold AL. Inorg. Chem. 2006; 45: 2367–2369. Crossref, ISIGoogle Scholar
    • 35. Yoshida T, Zhou W, Furuyama T, Leznoff DB and Kobayashi N. J. Am. Chem. Soc. 2015; 137: 9258–9261. Crossref, ISIGoogle Scholar
    • 36. McKearney D, Choua S, Zhou W, Ganga-Sah Y, Ruppert R, Wytko J, Weiss J and Leznoff DB. Inorg. Chem. 2018; 57: 9644–9655. Crossref, ISIGoogle Scholar
    • 37. Hung C, Peterson M, Anderson C, Chang TY, Wu G, Scheiner S and Menard G. J. Am. Chem. Soc. 2019; 141: 2604–2613. Crossref, ISIGoogle Scholar
    • 38. Schwindt MA, Lejon T and Hegedus LS. Organometallics 1990; 9: 2814–2819. Crossref, ISIGoogle Scholar
    • 39. Hübschle CB, Sheldrick GM and Dittrich B. J. Appl. Crystallogr. 2011; 44: 1281–1284. Crossref, ISIGoogle Scholar
    • 40. APEX3S, and SADABS. Madison, WI: Bruker AXS Inc.; 2016. Google Scholar
    • 41. Sheldrick GM. TWINABS, version 2012/1. Göttingen, Germany: University of Göttingen; 1996. Google Scholar
    • 42. Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849–854. Crossref, ISIGoogle Scholar
    • 43. Fenn TD, Ringe D and Petsko GA. J. Appl. Crystallogr. 2003; 36: 944–947. Crossref, ISIGoogle Scholar
    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes