Synthesis, structures and reduction chemistry of monophthalocyanine scandium hydroxides
Abstract
The preparation and structural characterization of a pair of scandium(III) phthalocyanine hydroxide complexes were achieved by reaction of PcScCl with alkali metal alkoxides, likely via hydrolysis of soluble PcSc-alkoxide intermediates. A ScLi-OH) cubane supported by two distorted Pc rings of the form (PcSc)-OH)Li(THF)(DME) was isolated from the reaction of PcScCl with LiOPr, while a simpler alkali-metal-free [PcSc-OH)(THF)] was obtained from addition of NaOBu; both structures are reminiscent of bent metallocenes, with dihedral angles between the two Pc rings of 50.8 and 37.7respectively. A soluble PcScOH material can also be obtained directly via hydrolysis of insoluble PcScCl in approximately 95:5 THF:water. Reduction of the Pc ring of PcScCl using KC is reversible and generates Pc and Pc-containing materials that were characterized via UV-vis spectroscopy and, where appropriate EPR and H NMR spectroscopy; analogous reductions of the PcScOH-based species were irreversible. Exposure of the air-sensitive, reduced PcScCl-based species to ambient atmosphere generated PcScOH materials analogous to the direct hydrolysis route.
This paper is part of the 2019 Women in Porphyrin Science special issue.
References
- 1. , In Phthalocyanines: Properties and Applications, Vol. 3. Leznoff CCLever ABP. (Eds.) VCH: New York, 1993, pp. 1–69. Google Scholar
- 2. , In Handbook of Porphyrin Science, Vol. 9. Kadish KMSmith KMGuilard R. (Eds.) World Scientific Press: Singapore, 2010, pp. 1–644. Link, Google Scholar
- 3. . In The Porphyrin Handbook: Applications of Phthalocyanines, Vol. 19. Kadish KMSmith KMGuilard R. (Eds.) Academic Press: San Diego, 2003, pp. 151–177. Google Scholar
- 4. . J. Porphyrins Phthalocyanines 1999; 3: 488–499. Link, ISI, Google Scholar
- 5. . Coord. Chem. Rev. 2001; 219–221: 993–1032. Crossref, ISI, Google Scholar
- 6. . In Phthalocyanines: Properties and Applications, Vol. 1. Leznoff CCLever ABP. (Eds.) VCH: New York, 1989, pp. 133–289. Google Scholar
- 7. . Chem. Commun. 2018; 54: 1829–1832. Crossref, ISI, Google Scholar
- 8. . Chem. — Eur. J. 2017; 23: 2323–2331. Crossref, ISI, Google Scholar
- 9. . Dalton Trans. 2015; 44: 13955–13961. Crossref, ISI, Google Scholar
- 10. . Chem. Commun. 2015; 15: 5986–5989. Crossref, ISI, Google Scholar
- 11. . Inorg. Chem. 2010; 49: 3343–3350. Crossref, ISI, Google Scholar
- 12. . Z. Anorg. Allg. Chem. 2001; 627: 485–497. Crossref, ISI, Google Scholar
- 13. . Russ. J. Inorg. Chem. 2007; 52: 1758–1768. Crossref, ISI, Google Scholar
- 14. . Zh. Neorg. Khim. 1971; 16: 3179–3181. Google Scholar
- 15. . Monatsh. Chem. 1974; 105: 327–333. Crossref, ISI, Google Scholar
- 16. . Inorg. Chim. Acta 2018; 483: 203–210. Crossref, ISI, Google Scholar
- 17. . Magnetochemistry 2017; 3: 21. Crossref, ISI, Google Scholar
- 18. . App. Phys. Lett. 2011; 99: 163104. Crossref, ISI, Google Scholar
- 19. . Coord. Chem. Rev. 2016; 319: 110–179. Crossref, ISI, Google Scholar
- 20. . Inorg. Chem. 1977; 16: 511–522. Crossref, ISI, Google Scholar
- 21. . Angew. Chem., Int. Ed. 2001; 40: 3534–3565. Crossref, ISI, Google Scholar
- 22. . Acta Cryst. E. 2019; 75: 540–542. Crossref, ISI, Google Scholar
- 23. . Organometallics 1993; 12: 3645–3654. Crossref, ISI, Google Scholar
- 24. . Coord. Chem. Rev. 1995; 140: 137–168. Crossref, ISI, Google Scholar
- 25. . J. Magn. Reson. A 1995; 117: 295–303. Crossref, Google Scholar
- 26. . J. Magn. Reson. 2005; 175: 340–346. Crossref, ISI, Google Scholar
- 27. . In Phthalocyanines: Properties and Applications, Vol. 3. Leznoff CCLever ABP. (Eds.) VCH: New York, 1993, pp. 227–296. Google Scholar
- 28. , J. Porphyrins Phthalocyanines 2012; 16: 154–162. Link, ISI, Google Scholar
- 29. . Inorg. Chim. Acta 1988; 144: 47–51. Crossref, ISI, Google Scholar
- 30. . Chem. —Eur. J. 2015; 21: 1014–1028. Crossref, ISI, Google Scholar
- 31. . Inorg. Chim. Acta 1987; 127: L1–L3. Crossref, ISI, Google Scholar
- 32. . Dalton Trans. 2013; 42: 6810–6816. Crossref, ISI, Google Scholar
- 33. . Inorg. Chem. 2007; 46: 7713–7715. Crossref, ISI, Google Scholar
- 34. . Inorg. Chem. 2006; 45: 2367–2369. Crossref, ISI, Google Scholar
- 35. . J. Am. Chem. Soc. 2015; 137: 9258–9261. Crossref, ISI, Google Scholar
- 36. . Inorg. Chem. 2018; 57: 9644–9655. Crossref, ISI, Google Scholar
- 37. . J. Am. Chem. Soc. 2019; 141: 2604–2613. Crossref, ISI, Google Scholar
- 38. . Organometallics 1990; 9: 2814–2819. Crossref, ISI, Google Scholar
- 39. . J. Appl. Crystallogr. 2011; 44: 1281–1284. Crossref, ISI, Google Scholar
- 40. APEX3S, and SADABS. Madison, WI: Bruker AXS Inc.; 2016. Google Scholar
- 41. Sheldrick GM. TWINABS, version 2012/1. Göttingen, Germany: University of Göttingen; 1996. Google Scholar
- 42. . J. Appl. Crystallogr. 2012; 45: 849–854. Crossref, ISI, Google Scholar
- 43. . J. Appl. Crystallogr. 2003; 36: 944–947. Crossref, ISI, Google Scholar
Handbook of Porphyrin Science now available in 46 volumes