World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Acid–base controllable singlet oxygen generation in supramolecular porphyrin–gold nanoparticle composites tethered by rotaxane linkers

    https://doi.org/10.1142/S108842461950086XCited by:5 (Source: Crossref)

    Mechanically-interlocked photosensitizer–quencher systems based on free-base tetraphenylporphyrin (H2TPP)–gold nanoparticle (AuNP) composites has been designed and synthesized by utilizing a rotaxane architecture comprised of secondary ammonium and crown ether subunit. The H2TPP-substituted 24-crown-8 was able to shuttle along the alkanethiolate axle, triggered by deprotonation/protonation at the ammonium station, altering the H2TPP–AuNP distance and the photoexcitation energy transfer efficiency. Upon switching, quantum yields for photosensitized singlet oxygen (1O2) generation and fluorescence after deprotonation were quenched by 46% and 42%, respectively. External environment-responsive 1O2 generation based on such a protonation/deprotonation-driven molecular switch is potentially advantageous for a variety of applications including photodynamic therapies.

    Dedicated to Professor Atsuhiro Osuka in celebration of his 65th birthday.

    References

    • 1. (a) Nowakowska M and Kepcynski M. J. Photochem. Photobiol. A: Chem. 1998; 116: 251–256. (b) Gerdes R, Bartels O, Schneider G, Wöhrle D and Schulz-Ekloff G. Polym. Adv. Technol. 2001; 12: 152–160. (c) Iliev V, Prahov L, Bilyarska L, Fischer H, Schulz-Ekloff G, Wöhrle D and Petrov L. J. Mol. Catal. A:Chem. 2000; 151: 161–169. Google Scholar
    • 2. Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R and Burgard A. Org. Process Res. Dev. 2014; 18: 417–422. Crossref, Web of ScienceGoogle Scholar
    • 3. (a) Rebeiz CA, Reddy KN, Nadihalli OB and Velu J. J. Photochem. Photobiol. 1990; 52: 1099–1117. (b) Rebeiz CA. Chlorophyll Biosynthesis and Technological Applications, Springer: 2014; 359–408. (c) Amor TB and Jori G. Insect Biochem. Mol. Biol. 2000; 30: 915–925. (d) Rebeiz CA, Gut LJ, Lee K, Juvik JA, Rebeiz CC and Bouton CE. Crit. Rev. Plant Sci. 1995; 14: 329–366. Google Scholar
    • 4. Jayaraman S, Gantz DL and Gursky O. Biophys. J. 2005; 88: 2907–2918. Crossref, Web of ScienceGoogle Scholar
    • 5. Matz CE and Jonas A. J. Biol. Chem. 1982; 257: 4535–4540. Crossref, Web of ScienceGoogle Scholar
    • 6. Marras SAE, Kramer FR and Tyagi S. Nucl. Acids Res. 2002; 30: e122. Crossref, Web of ScienceGoogle Scholar
    • 7. (a) Wasielewski MR. Chem. Rev. 1992; 92: 435–461. (b) Piotrowiak P. Chem. Soc. Rev. 1999; 28: 143–150. Google Scholar
    • 8. (a) Foote CS, Chang YC and Denny RW. J. Am. Chem. Soc. 1970; 92: 5216–5218. (b) Ouchi A, Aizawa K, Iwasaki Y, Inakuma T, Terao J, Nagaoka S and Mukai K. J. Agric. Food Chem. 2010; 58: 9967–9978. Google Scholar
    • 9. Sluis RV, Bhujwalla ZM, Raghunand N, Ballesteros P, Alvarez J, Cerdán S, Galons JP and Gillies RJ. Magn. Reson. Med. 1999; 41: 743–750. Crossref, Web of ScienceGoogle Scholar
    • 10. Battogtokh G and Ko YT. J. Mater. Chem. B 2015; 3: 9349–9359. Crossref, Web of ScienceGoogle Scholar
    • 11. Crowley JD, Goldup SM, Lee A, Leigh DA and McBurney RT. Chem. Soc. Rev. 2009; 38: 1530–1541. Crossref, Web of ScienceGoogle Scholar
    • 12. (a) Anelli PL, Spencer N and Stoddart JF. J. Am. Chem. Soc. 1991; 113: 5131–5133. (b) Huang TJ, Tseng HR, Sha L, Lu W, Brough B, Flood AH, Yu BD, Celestre PC, Chang JP, Stoddart JF and Ho CM. Nano Lett. 2004; 4: 2065–2071. Google Scholar
    • 13. Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N and Weder C. J. Am. Chem. Soc. 2018; 140: 1584–1587. Crossref, Web of ScienceGoogle Scholar
    • 14. (a) Ling J and Huang CZ. Anal. Methods 2010; 2: 1439–1447. (b) Shinohara A and Shinmori H. Bull. Chem. Soc. Jpn. 2016; 89: 1341–1343. (c) Imahori H, Kashiwagi Y, Endo Y, Hanada T, Nishimura Y, Yamazaki I, Araki Y, Ito O and Fukuzumi S. Langmuir 2004; 20: 73–81. Google Scholar
    • 15. Ouchi M, Kojima M, Otoshi Y, Yoshida H and Shibata H. Reports of Graduate School of Engineering, University of Hyogo 2006; 58: 16–20. Google Scholar
    • 16. (a) Buchanan GW, Rastegar MF and Yap GPA. J. Mol. Struct. 2001; 561: 43–54. (b) Zhilina ZI, Mel’nik VI. Andronati SA and Abramovich AE. Zh. Org. Khim. 1989; 25: 1063–1070. Google Scholar
    • 17. Pfammatter MJ, Siljegovic V, Darbre T and Kesse R. Helv. Chim. Acta 2001; 84: 678–689. Crossref, Web of ScienceGoogle Scholar
    • 18. Schuster DL, MacMahon S, Guldi DM, Echegoyen L and Braslavsky SE. Tetrahedron 2006; 62: 1928–1936. Crossref, Web of ScienceGoogle Scholar
    • 19. Ingram RS, Hostetler MJ and Murray RW. J. Am. Chem. Soc. 1997; 119: 9157–9178. Google Scholar
    • 20. a) Nakazono K and Takata T. Chem. Eur. J. 2010; 16: 13783–13794. (b) Zhu K, Zhang M, Wang F, Li N, Li S and Huang F. New J. Chem. 2008; 32: 1827–1830. (c) Hmadeh M, Fang L, Trabolsi A, Elhabiri M, Albrecht-Gary AM and Stoddart JF. J. Mater. Chem. 2010; 20: 3422–3430. Google Scholar
    • 21. (a) Imahori H, Arimura M, Hanada T, Nishimura Y, Yamazaki I, Sakata Y and Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 335–336. (b) Hasobe T, Imahori H, Kamat PV and Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 14962–14963. (c) Imahori H and Fikuzumi S. Adv. Mater. 2001; 13: 1197–1199. Google Scholar
    • 22. (a) Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM and van der Velden JWA. Chem. Ber. 1981; 114: 3634–3642. (b) Weare WW, Reed SM, Warner MG and Hutchison JE. J. Am. Chem. Soc. 2000; 122: 12890–12891. (c) Woehrle GH, Brown LO and Hutchison JE. J. Am. Chem. Soc. 2005; 127: 2172–2183. Google Scholar
    • 23. Smith BL and Hutchison JE. J. Phys. Chem. C 2013; 117: 25127–25137. Crossref, Web of ScienceGoogle Scholar
    • 24. Kubo R, Kawasaki A and Kobayashi SI. Annu. Rev. Mater. Sci. 1984; 12: 49–66. CrossrefGoogle Scholar
    • 25. (a) Ashjari M, Dehfuly S, Fatehi D, Shabanid R and Korujid M. RSC Adv. 2015; 5: 104621–104628. (b) Prasanna SW, Poorani G, Kumar MS, Aruna P and Ganesan S, Mater. Express 2014; 4: 359–366. Google Scholar
    • 26. Castillero P, Roales J, Lopes-Costa T, Sánchez-Valencia JR, Barranco A, González-Elipe AR and Pedrosa JM. Sensors 2017; 17: 24. Crossref, Web of ScienceGoogle Scholar
    • 27. (a) Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B and Schnurpfeil G. J. Porphyrin Phthalocyanine 1998; 2: 145–158, (b) Merkel PB and Kearns DR. J. Am. Chem. Soc. 1975; 97: 462–463. Google Scholar
    • 28. Wilkinson F, Helman WP and Ross AB. J. Phys. Chem. Ref. Data 1993; 22: 113–262. Crossref, Web of ScienceGoogle Scholar
    • 29. Seybold PG and Gouterman M. J. Mol. Spectrosc. 1969; 31: 1–13. Crossref, Web of ScienceGoogle Scholar
    • 30. Ghazal B, Kaya EN, Husain A, Ganesan A, Durmuş M and Makhseed S. J. Porphyrins Phthalocyanines 2019; 23: 46–55. Link, Web of ScienceGoogle Scholar
    • 31. Soy RC, Babu B, Oluwole DO, Nwaji N, Oyim J, Amuhaya E, Prinsloo E, Mack J and Nyokong Tebello. J. Porphyrins Phthalocyanines 2019; 23: 34–45. Link, Web of ScienceGoogle Scholar
    • 32. Imahori H, Hosomizu K, Mori Y, Sato T, Ahn T, Kim S, Kim D, Nishimura Y, Yamazaki I, Ishii H, Hotta H and Matano Y. J. Phys. Chem. B 2004; 108: 5018–5025. Crossref, Web of ScienceGoogle Scholar
    • 33. Billman JH and Diesing AC. J. Org. Chem. 1957; 22: 1068–1070. Crossref, Web of ScienceGoogle Scholar
    • 34. Wardell JL. The Chemistry of the Thiol Group. John Wiley: New York, 1974; 163–269. Google Scholar
    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes