Acid–base controllable singlet oxygen generation in supramolecular porphyrin–gold nanoparticle composites tethered by rotaxane linkers
Abstract
Mechanically-interlocked photosensitizer–quencher systems based on free-base tetraphenylporphyrin (H2TPP)–gold nanoparticle (AuNP) composites has been designed and synthesized by utilizing a rotaxane architecture comprised of secondary ammonium and crown ether subunit. The H2TPP-substituted 24-crown-8 was able to shuttle along the alkanethiolate axle, triggered by deprotonation/protonation at the ammonium station, altering the H2TPP–AuNP distance and the photoexcitation energy transfer efficiency. Upon switching, quantum yields for photosensitized singlet oxygen (1O generation and fluorescence after deprotonation were quenched by 46% and 42%, respectively. External environment-responsive 1O2 generation based on such a protonation/deprotonation-driven molecular switch is potentially advantageous for a variety of applications including photodynamic therapies.
Dedicated to Professor Atsuhiro Osuka in celebration of his 65th birthday.
References
- 1. (a) Nowakowska M and Kepcynski M. J. Photochem. Photobiol. A: Chem. 1998; 116: 251–256. (b) Gerdes R, Bartels O, Schneider G, Wöhrle D and Schulz-Ekloff G. Polym. Adv. Technol. 2001; 12: 152–160. (c) Iliev V, Prahov L, Bilyarska L, Fischer H, Schulz-Ekloff G, Wöhrle D and Petrov L. J. Mol. Catal. A:Chem. 2000; 151: 161–169. Google Scholar
- 2. . Org. Process Res. Dev. 2014; 18: 417–422. Crossref, Web of Science, Google Scholar
- 3. (a) Rebeiz CA, Reddy KN, Nadihalli OB and Velu J. J. Photochem. Photobiol. 1990; 52: 1099–1117. (b) Rebeiz CA. Chlorophyll Biosynthesis and Technological Applications, Springer: 2014; 359–408. (c) Amor TB and Jori G. Insect Biochem. Mol. Biol. 2000; 30: 915–925. (d) Rebeiz CA, Gut LJ, Lee K, Juvik JA, Rebeiz CC and Bouton CE. Crit. Rev. Plant Sci. 1995; 14: 329–366. Google Scholar
- 4. . Biophys. J. 2005; 88: 2907–2918. Crossref, Web of Science, Google Scholar
- 5. . J. Biol. Chem. 1982; 257: 4535–4540. Crossref, Web of Science, Google Scholar
- 6. . Nucl. Acids Res. 2002; 30: e122. Crossref, Web of Science, Google Scholar
- 7. (a) Wasielewski MR. Chem. Rev. 1992; 92: 435–461. (b) Piotrowiak P. Chem. Soc. Rev. 1999; 28: 143–150. Google Scholar
- 8. (a) Foote CS, Chang YC and Denny RW. J. Am. Chem. Soc. 1970; 92: 5216–5218. (b) Ouchi A, Aizawa K, Iwasaki Y, Inakuma T, Terao J, Nagaoka S and Mukai K. J. Agric. Food Chem. 2010; 58: 9967–9978. Google Scholar
- 9. . Magn. Reson. Med. 1999; 41: 743–750. Crossref, Web of Science, Google Scholar
- 10. . J. Mater. Chem. B 2015; 3: 9349–9359. Crossref, Web of Science, Google Scholar
- 11. . Chem. Soc. Rev. 2009; 38: 1530–1541. Crossref, Web of Science, Google Scholar
- 12. (a) Anelli PL, Spencer N and Stoddart JF. J. Am. Chem. Soc. 1991; 113: 5131–5133. (b) Huang TJ, Tseng HR, Sha L, Lu W, Brough B, Flood AH, Yu BD, Celestre PC, Chang JP, Stoddart JF and Ho CM. Nano Lett. 2004; 4: 2065–2071. Google Scholar
- 13. . J. Am. Chem. Soc. 2018; 140: 1584–1587. Crossref, Web of Science, Google Scholar
- 14. (a) Ling J and Huang CZ. Anal. Methods 2010; 2: 1439–1447. (b) Shinohara A and Shinmori H. Bull. Chem. Soc. Jpn. 2016; 89: 1341–1343. (c) Imahori H, Kashiwagi Y, Endo Y, Hanada T, Nishimura Y, Yamazaki I, Araki Y, Ito O and Fukuzumi S. Langmuir 2004; 20: 73–81. Google Scholar
- 15. . Reports of Graduate School of Engineering, University of Hyogo 2006; 58: 16–20. Google Scholar
- 16. (a) Buchanan GW, Rastegar MF and Yap GPA. J. Mol. Struct. 2001; 561: 43–54. (b) Zhilina ZI, Mel’nik VI. Andronati SA and Abramovich AE. Zh. Org. Khim. 1989; 25: 1063–1070. Google Scholar
- 17. . Helv. Chim. Acta 2001; 84: 678–689. Crossref, Web of Science, Google Scholar
- 18. . Tetrahedron 2006; 62: 1928–1936. Crossref, Web of Science, Google Scholar
- 19. . J. Am. Chem. Soc. 1997; 119: 9157–9178. Google Scholar
- 20. a) Nakazono K and Takata T. Chem. Eur. J. 2010; 16: 13783–13794. (b) Zhu K, Zhang M, Wang F, Li N, Li S and Huang F. New J. Chem. 2008; 32: 1827–1830. (c) Hmadeh M, Fang L, Trabolsi A, Elhabiri M, Albrecht-Gary AM and Stoddart JF. J. Mater. Chem. 2010; 20: 3422–3430. Google Scholar
- 21. (a) Imahori H, Arimura M, Hanada T, Nishimura Y, Yamazaki I, Sakata Y and Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 335–336. (b) Hasobe T, Imahori H, Kamat PV and Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 14962–14963. (c) Imahori H and Fikuzumi S. Adv. Mater. 2001; 13: 1197–1199. Google Scholar
- 22. (a) Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM and van der Velden JWA. Chem. Ber. 1981; 114: 3634–3642. (b) Weare WW, Reed SM, Warner MG and Hutchison JE. J. Am. Chem. Soc. 2000; 122: 12890–12891. (c) Woehrle GH, Brown LO and Hutchison JE. J. Am. Chem. Soc. 2005; 127: 2172–2183. Google Scholar
- 23. . J. Phys. Chem. C 2013; 117: 25127–25137. Crossref, Web of Science, Google Scholar
- 24. . Annu. Rev. Mater. Sci. 1984; 12: 49–66. Crossref, Google Scholar
- 25. (a) Ashjari M, Dehfuly S, Fatehi D, Shabanid R and Korujid M. RSC Adv. 2015; 5: 104621–104628. (b) Prasanna SW, Poorani G, Kumar MS, Aruna P and Ganesan S, Mater. Express 2014; 4: 359–366. Google Scholar
- 26. . Sensors 2017; 17: 24. Crossref, Web of Science, Google Scholar
- 27. (a) Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B and Schnurpfeil G. J. Porphyrin Phthalocyanine 1998; 2: 145–158, (b) Merkel PB and Kearns DR. J. Am. Chem. Soc. 1975; 97: 462–463. Google Scholar
- 28. . J. Phys. Chem. Ref. Data 1993; 22: 113–262. Crossref, Web of Science, Google Scholar
- 29. . J. Mol. Spectrosc. 1969; 31: 1–13. Crossref, Web of Science, Google Scholar
- 30. . J. Porphyrins Phthalocyanines 2019; 23: 46–55. Link, Web of Science, Google Scholar
- 31. . J. Porphyrins Phthalocyanines 2019; 23: 34–45. Link, Web of Science, Google Scholar
- 32. . J. Phys. Chem. B 2004; 108: 5018–5025. Crossref, Web of Science, Google Scholar
- 33. . J. Org. Chem. 1957; 22: 1068–1070. Crossref, Web of Science, Google Scholar
- 34. . The Chemistry of the Thiol Group. John Wiley: New York, 1974; 163–269. Google Scholar
Handbook of Porphyrin Science now available in 46 volumes