Design of metalloporphyrin-based dendritic nanoprobes for two-photon microscopy of oxygen
Abstract
Metalloporphyrin-based phosphorescent nanoprobes are being developed for two-photon microscopy of oxygen. In these molecular constructs, the generation of porphyrin triplet states following two-photon excitation is induced by the intramolecular Förster-type resonance energy transfer from a covalently attached 2P antenna. In the earlier developed prototypes, electron transfer between the antenna and the metalloporphyrin strongly interferred with the phosphorescence, reducing the sensitivity and the dynamic range of the sensors. By tuning the distances between the antenna and the core, and adjusting their redox potentials, the unwanted electron transfer could be prevented. An array of phosphorescent Pt porphyrins (energy transfer acceptors) and 2P dyes (energy transfer donors) was screened using dynamic quenching of phosphorescence, and the FRET-pair with the minimal ET rate was identified. This pair, consisting of Coumarin-343 and Ptmeso-tetra-(4-alkoxyphenyl)porphyrin, was used to construct a probe in which the antenna fragments were linked to the termini of G3 poly(arylglycine) (AG) dendrimer with PtP core. The folded dendrimer formed an insulating layer between the porphyrin and the antenna, simultaneously controlling the rate of oxygen quenching (Stern-Volmer oxygen quenching constant). Modification of the dendrimer periphery with oligoethyleneglycol residues made the probe's signal insensitive to the presence of proteins and other macromolecular solutes.
References
- J. Biol. Chem. 262, 5476 (1987). Web of Science, Google Scholar
- a) Rietveld I. B., Kim E. and Vinogradov S. A. Tetrahedron 2003; 59: 3821-3831; b) Dunphy I., Vinogradov S. A. and Wilson D. F. Anal. Biochem. 2002; 310: 191-198 . Google Scholar
- Science 241, 1649 (1988), DOI: 10.1126/science.3420417. Web of Science, Google Scholar
- Applied Optics 45, 8547 (2006), DOI: 10.1364/AO.45.008547. Web of Science, Google Scholar
- Science 248, 73 (1990), DOI: 10.1126/science.2321027. Web of Science, Google Scholar
- Chem. Phys. Chem. 9, 1673 (2008). Web of Science, Google Scholar
- J. Am. Chem. Soc. 127, 11851 (2005). Web of Science, Google Scholar
- J. Phys. Chem. A 111, 6977 (2007), DOI: 10.1021/jp071586f. Web of Science, Google Scholar
- Two-photon action cross-section is defined as the product of the 2PA cross-section (σ2) and the emission (phosphorescence) quantum yield (ϕp) . Google Scholar
- Similar ideas have been used for construction of 2P-enhanced porphyrin-based PDT agents: a) Dichtel W. R., Serin J. M., Edder C., Fréchet J. M. J., Matuszewski M., Tan L. S., Ohulchanskyy T. Y. and Prasad P. N. J. Am. Chem. Soc. 2004; 126: 5380-5381; b) Oar M. A., Serin J. M., Dichtel W. R. and Fréchet J. M. J. Chem. Mater. 2005; 17: 2267-2275 . Google Scholar
- J. Photochem. Photobiol. A-Chem. 198, 75 (2008), DOI: 10.1016/j.jphotochem.2008.02.020. Web of Science, Google Scholar
- Anal. Chem. 79, 9310 (2007), DOI: 10.1021/ac0712796. Web of Science, Google Scholar
- Opt. Spectrosc. 100, 590 (2006), DOI: 10.1134/S0030400X06040163. Web of Science, Google Scholar
- J. Opt. Soc. Am. B-Opt. Phys. 13, 481 (1996), DOI: 10.1364/JOSAB.13.000481. Web of Science, Google Scholar
- Chem.-Eur. J. 5, 1338 (1999). Web of Science, Google Scholar
- Macromolecules 35, 1991 (2002), DOI: 10.1021/ma0121161. Web of Science, Google Scholar
- Macromolecules 29, 5236 (1996), DOI: 10.1021/ma960575+. Web of Science, Google Scholar
- J. Am. Chem. Soc. 112, 7638 (1990), DOI: 10.1021/ja00177a027. Web of Science, Google Scholar
- Macromolecules 24, 1443 (1991), DOI: 10.1021/ma00006a042. Web of Science, Google Scholar
- Org. Lett. 7, 1761 (2005), DOI: 10.1021/ol050341n. Web of Science, Google Scholar
- Detailed account on the construction of phosphorescent porphyrin-AG-dendrimers for oxygen sensing will be reported elsewhere (Lebedev et al. manuscript in preparation) . Google Scholar
- Angew. Chem. Int. Edit. Engl. 34, 2725 (1996), DOI: 10.1002/anie.199527251. Web of Science, Google Scholar
- J. Mol. Spectrosc. 31, 1 (1969), DOI: 10.1016/0022-2852(69)90335-X. Web of Science, Google Scholar
- J. Phys. Chem. 84, 1871 (1980), DOI: 10.1021/j100451a030. Web of Science, Google Scholar
- J. Photochem. Photobiol. C-Photochem. Rev. 7, 40 (2006), DOI: 10.1016/j.jphotochemrev.2006.04.001. Web of Science, Google Scholar
- J. Phys. Chem. A 107, 3639 (2003), DOI: 10.1021/jp0224315. Web of Science, Google Scholar
- Proc. Natl. Acad. Sci. U. S. A. 102, 10017 (2005), DOI: 10.1073/pnas.0504598102. Web of Science, Google Scholar
- Appl. Spectros. 54, 849 (2000), DOI: 10.1366/0003702001950210. Web of Science, Google Scholar
- Photochem. Photobiol. 72, 821 (2000). Web of Science, Google Scholar
- Photochem. Photobiol. 82, 443 (2006), DOI: 10.1562/2005-08-24-RA-657. Web of Science, Google Scholar
- A possible solution to this problem would be low repetition rate (e.g. 1 kHz) regenerative amplifiers . Google Scholar
- Nature Photonics 2, 420 (2008), DOI: 10.1038/nphoton.2008.100. Web of Science, Google Scholar
Handbook of Porphyrin Science now available in 46 volumes